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PREFACE

Fermat, Euler, Lagrange, Legendre. . .introttum ad penetralia huius
divinae scientiae aperuerunt, quantisque divitiis abundent patefecerunt
Gauss, Disquisitiones Arithmeticae

The study of transcendental numbers, springing from such diverse
sources a8 the ancient Greek question concerning the squaring of the
circle, the rudimentary researches of Liouville and Cantor, Hermite’s
investigations on the exponential function and the seventh of Hilbert’s
famous list of 23 problems, has now developed into a fertile and
extensive theory, enriching widespread branches of mathematies; and
the time has seemed opportune to prepare a systematic treatise. My
aim has been to provide a comprehensive account of the recent major
discoveries in the field; the text includes, more especially, expositions
of the latest theories relating to linear forms in the logarithms of
algebraic numbers, of Schmidt’s generalization of the Thue—Siegel-
Roth theorem, of Shidlovsky’s work on Siegel’s E-functions and of
SprindZuk’s solution to the Mahler conjecture. Classical aspects of the
subject are discussed in the course of the narrative; in particular, to
facilitate the acquisition of a true historical perspective, a survey of
the theory as it existed at about the turn of the century is given at the
beginning. Proofs in the subject tend, as will be appreciated, to be
long and intricate, and thus it has been necessary to select for detailed
treatment only the most fundamental results; moreover, generally
speaking, emphasis has been placed on arguments which have led to
the strongest propositions known to date or have yielded the widest
application. Nevertheless, it is hoped that adequate references have
been included to associated works.

Notwithstanding its long history, it will be apparent that the theory
of transcendental numbers bears a youthful countenance. Many topics
would certainly benefit by deeper studies and several famous long-
standing problems remain open. As examples, one need mention only
the celebrated conjectures concerning the algebraic independence of
e and 7 and the trunscendence of Euler’s constant vy, the solution to
either of which would represent a major advance. If this book should

X
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play some small réle in promoting future progress, the author will be
well satisfied.

The text has arisen from numerous lectures delivered in Cambridge,
America and elsewhere, and it has also formed the substance of an
Adams Prize essay.

I am grateful to Dr D. W. Masser for his kind assistance in check-
ing the proofs, and also to the Cambridge University Press for the
care they have taken with the printing.

Cambridge, 1974 A.B.



1
THE ORIGINS

1. Liouville’s theorem

The theory of transcendental numbers was originated by Liouville in
his famous memoir? of 1844 in which he obtained, for the first time,
a class, trés-étendue, as it was described in the title of the paper, of
numbers that satisfy no algebraic equation with integer coefficients.
Some isolated problems pertaining to the subject, however, had been
formulated long before this date, and the closely related study of
irrational numbers had constituted a major focus of attention for
at least a century preceding. Indeed, by 1744, Euler had already
established the irrationality of e, and, by 1761, Lambert had con-
firmed the irrationality of 7. Moreover, the early studies of continued
fractions had revealed several basic features concerning the approxi-
mation of irrational numbers by rationals. It was known, for instance,
that for any irrational « there exists an infinite sequence of rationals
p/q (¢ > 0) such that* |o—p/g| < 1/¢% and it was known also that the
continued fraction of a quadratic irrational is ultimately periodic,
whence there exists ¢ = ¢(o) > 0 such that |a—p/g| > c/¢? for all
rationals p/q (¢ > 0). Liouville observed that a result of the latter kind
holds more generally, and that there exists in fact a limit to the
accuracy with which any algebraic number, not itself rational, can be
approximated by rationals. It was this observation that provided the
first practical criterion whereby transcendental numbers could be
constructed.

Theorem 1.1. For any algebraic number o with degree n > 1, there
exists ¢ = c(ot) > 0 such that |oc—p/q| > ¢/q™ for all rationals p/q (g > 0).

The theorem follows almost at once from the definition of an
algebraic number. A real or complex number is said to be algebraic if
it is a zero of a polynomial with integer coefficients; every algebraic

+ C.R. 18 (1844), 883-5, 910-11; J. Math. pures appl. 16 (1851), 133—42, For abbrevia-
tions see page 130.

1 This is in fact easily verified; for any integer @ > 1, two of the @41 numbers 1,
{qa} (0 < ¢ < Q), where {ga} denotes the fractional part of ga, lie in one of the @
subintervals of length 1/@ into which [0, 1] can be divided, and their difference has
the form ga —p.

(1]
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number « is the zero of some such irreducible’ polynomial, say /P,
unique up to a constant multiple, and the degree of « is defined as the
degree of P. It suffices to prove the theorem when « is real; in this case,
for any rational p/q (g > 0), we have by the mean value theorcm:

—P(plg) = P(a)—P(p/q) = (2 —p/q) P'(§)

forsome £ between p/gand a. Clearly one can assume that | — p/g| < 1,
for the result would otherwise be valid trivially; then |£| < 1+ || and
thus |P’(£)| < 1/c for some ¢ = ¢(a) > 0; hence

le—plg| > c|P(p/q)]-

But, since P is irreducible, we have P(p/q) + 0, and the integer
|g P(p/q)| is therefore at least 1; the theorem follows. Note that one
can easily give an explicit value for ¢; in fact one can take

¢t =n¥(1+|a|)"1H,

where H denotes the height of «, that is, the maximum of the absolute
values of the coefficients of P.

A real or complex number that is not algebraic is said to be tran-
scendental. In view of Theorem 1.1, an obvious instance of such a

0
number is given by £ = ¥, 10—, For if we write
n=1

J
p,; = 10" 2_;110—n!, g =101 (j=1,2,.),

n=

then p;, g; are relatively prime rational integers and we have

o0
lg-Z’j/%l = 3 10!
n=j+1
< 10°0HDN (1 4+ 107141072+ ...) = LR g7 i1 < g5,

Many other transcendental numbers can be specified on the basis of
Liouville’s theorem; indeed any non-terminating decimal in which
there occur sufficiently long blocks of zeros, or any continued fraction
in which the partial quotients increase sufficiently rapidly, provides
an example. Numbers of this kind, that is real £ which possess a
sequence of distinct rational approximations p,/q, (» = 1,2, ...} such
that |£—p,/q,| < 1/gé», where limsupw, = c0, have been termed
Liouville numbers; and, of course, these are transcendental. But other,

+ That is, does not factorize over the integers or, oquivalently, by Gauss’ lemma,
over the rationals,
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less obvious, applications of Liouville’s idea to the construction of
transcendental numbers have been described; in particular, Maillett
used an extension of Theorem 1.1 concerning approximations by
quadratic irrationals to establish the transcendence of a remarkable
class of quasi-periodic continued fractions.?

In 1874, Cantor introduced the concept of countability and this
leads at once to the observation that ‘almost all’ numbers are tran-
scendental, Cantor’s work may be regarded as the forerunner of some
important metrical theory about which we shall speak in Chapter 9.

2. Transcendence of e

In 1873, there appeared Hermite’s epoch-making memoir entitled
Sur la fonction exponentielle’ in which he established the transcendence
of e, the natural base for logarithms. The irrationality of e had been
demonstrated, as remarked earlier, by Euler in 1744, and Liouville
had shown in 1840, directly from the defining series, that in fact neither
e nor ¢2 could be rational or a quadratic irrational; but Hermite’s work
began a new era. In particular, within a decade, Lindemann succeeded
in generalizing Hermite’s methods and, in a classic paper,"' he proved
that 7 is transcendental and solved thereby the ancient Greek problem
concerning the quadrature of the circle. The Greeks had sought to
construct, with ruler and compasses only, a square with area equal to
that of a given circle. This plainly amounts to constructing two points
in the plane at a distance /7 apart, assuming that a unit length is
prescribed. But, since all points capable of construction are defined
by the intersection of lines and circles, it follows easily that their
co-ordinates in a suitable frame of reference are given by algebraic
numbers. Thus the transcendence of 7 implies that the quadrature of
the circle is impossible.

The workof Hermite and Lindemann was simplified by Weierstrass?
in 1885, and further simplified by Hilbert,t Hurwitz! and Gordan® in
1893. We proceed now to demonstrate the transcendence of e and 7 in
a style suggested by these later writers.

1 See Bibliography. I Cf. Mathematika, 9 (1962), 1-8.
§ C.B.77; = Ocuvres III, 150-81. || M.A. 20 (1882), 213-25.
| Werke 1I, 341-62, 1+ Ges. Abh. I, 1-4.

11 Gottingen Nachrichten (1893), 153-5.  §§ M.A. 43 (1893), 222-5.
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Theorem 1.2. ¢ is transcendental.

Preliminary to the proof, we observe that if f(x) is any rpal poly-
nomial with degree m, say, and if

I(t) = f; et=uf (u)du,

where ¢ is an arbitrary complex number and the integral is taken over
theline joining 0 and¢, then, by repeated integration by parts, wehavet

10)= ¢ £ 10) - 510, (1)

Further, if f(x) denotes the polynomial obtained from f by replacing
each coefficient with its absolute value, then

t -
|10 gfolet—“f(u)ldu < |t e¥F(Jt]). (2)
Suppose now that e is algebraic, so that
Qotdret... +¢,€" =0 3

for some integers n > 0, g, + 0, ¢, ..., ¢,. We shall compare estimates
for :
=@ l0)+q (1) +... +q,I(n),
where I(t) is defined as above with
flx) =P x—1)P... (x—n)?,
p denoting a large prime. From (1) and (3) we have
m n .
J=—3 3 g foNE),
§=0k=0
where m = (n+1)p—1. Now clearly fO%k) = 0if j < p, k > 0 and if
Jj<p—1, k=0, and thus for all j, k other than j = p—1, k = 0, f9(k)
is an integer divisible by p!; further we have
Je(0) = (p— D! (—1)"? (n1)?,
whence, if p > n, f®-1(0) is an integer divisible by (p— 1)! but not by
p!l. It follows that, if also p > |g,|, then J is a non-zero integer divisible
by (p— 1)!and thus |J| > (p—1)!. Butthe trivial estimatef(k) < (2n)™
together with (2) gives
7] < lga| 6 (1) + .. +1ga| nenf(n) < o
for some ¢ independent of p. The estimates are inconsistent if p is
sufficiently large and the contradietion proves the theorem.

t fr) denotes the jth derivative of f.
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Theorem 1.3. 7 is transcendental.

Suppose the contrary, that s is algebraic; then also 8 = i7 is
algebraic. Let & have degree d, let 6, (= 6),6,, ..., 6, denote the con-
jugates of @ and let [ signify the leading coefficient in the minimal
polynomialt defining 8. From Euler’s equation ¢ = —1, we obtain

(1 +€%) (1 +¢2) ... (1 +e%d) = 0,
The product on the left can be written as a sum of 2% terms ¢®, where
O=¢0,+... +e50,,
and ¢; = 0 or 1; we suppose that precisely n of the numbers
€0,+... +€30,
are non-zero, and we denote these by ¢, ..., «,. We have then
g+esr+...4e%n =0, (4)

where ¢ is the positive integer 2¢—n.
We shall compare estimates for

J=I(e)+... + (),
where I(t) is defined as in the proof of Theorem 1.2 with
@) = Iwop g —a)p .. (—a,)P,

p again denoting a large prime. From (1) and (4) we have

m
T =—g SO0~ 3 T, 1),

F=0 j=0k=
where m = (R +1) p— 1. Now the sum over % is a symmetric poly-
nomial in Iz, ..., la,, with integer coefficients, and it follows from two
applications of the fundamental theorem on symmetric functions
together with the observation that each elementary symmetric
function in lay, ..., la,, is also an elementary symmetric function in the
2¢ numbers @, that it represents a rational integer. Further, since
Je;.) =0 when j < p, the latter is plainly divisible by pl.
Clearly also f(0) is a rational integer divisible by p! when
i+ p—1, and _
JxP f@0) = (p—-DHI(=1)"P (e ... )P
t That is, the irreducible polynomial indicated earlier with relatively prime integer

coefficients; the cooffleiont of 2¢ is called the leading coefficient, and it is assumed
positivo. Tho conjugaton aro the zoros of the polynomial.
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is arational integer divisible by (p — 1)! butnot by p!if p is sufficiently
large. Hence, if p > ¢, we have |J| > (p—1)!. But from (2) we obtain

IT1 < Joa €= F(Jaa]) + ...+ atg] €0l ([, ]) < 0

for some ¢ independent of p. The estimates are inconsistent for p
sufficiently large, and the contradiction proves the theorem.

3. Lindemann’s theorem

The two preceding theorems, that is the transcendence of ¢ and 7, are
special cases of a much more general result which Lindemann sketched
in his original memoir of 1882, and which was later rigorously demon-
strated by Weierstrass.

Theorem 1.4. For any distinct algebraic numbers a, ..., o, and any
non-zero algebraic numbers f,, ..., 5, we have

prea+ ...+ f,e% % 0,

It follows at once from Theorem 1.4 that e, ..., e*» are algebraically
independent for all algebraic «,, ..., a, linearly independent over the
rationals; this form of the result is generally known as Lindemann’s
theorem. As further immediate corollaries of Theorem 1.4, one sees
that cos a, sin« and tan o are transcendental for all algebraic a + 0,
and moreover log « is transcendental for algebraic « not 0 or 1.

Suppose now that the theorem is false, so that

fiear+ ...+ B,emm =0, (5)
One can clearly assume, without loss of generality, that the §’s are
rational integers, for this can be ensured by multiplying (5) by all the
expressions obtained on allowing £, ..., 8, on the left to'run inde-
pendently through their respective conjugates and then further
multiplying by a common denominator. Furthermore, one can

assume that there exist integers 0 = ny < n, < ... < n, = %, such that
pyt1s +++5 Oy, , 18 & Complete set of conjugates for each ¢, and

lB"t"‘l == 'Bﬂtn'

For certainly «;,...,a, are zeros of some polynomial with integer
coefficients and degrae N, say, and if a, 4, ..., &y denote the remaining

zeros, we have T(Bye™ + ... +Byeox) = 0,

where the product is over all permutations k,, ..., ky of 1,..., N and
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Bri1 = ... = By = 0. The left-hand side can be expressed as an aggre-
gate of terms exp (kya; + ... +hycty) with integer coefficients, where
hy, ..., hy are integers with sum N!, and clearly h o +... +hyay,
taken over all permutations k,,...,ky of 1, ..., N is a complete set of
conjugates; the condition concerning the equality of the #’s follows
by symmetry. Note also that, after collecting terms with the same
exponents, one at least of the new coefficients # will be non-zero; this
is readily confirmed by considering the coefficient of the term with
exponent that is highest according to the ordering of the complex
numbers z = z+1y given by 2, < 2, if 2, < 2, or 2, = x, and y; < y,.

Let now [ be any positive integer such that la,, ..., la, and I8y, ..., 18,
are algebraic integers,t and let

filz) = P{(x— o) ... (@—a,)P[(x—a;) (1<i<n),

where p denotes a large prime. We shall compare estimates for
[y ... J,|, where

J ﬂl a1)+ +/gn (an) (1 < v < n)’

and I(t) is defined as in the proof of Theorem 1.2, with f = f,. From
(1) and (5) we have
Ji=- Z Zﬂkfj)(“k

where m = np— 1. Further, ff(«,) is an algebraic integer divisible?
by p!unless j = p—1, k = ¢; and in the latter case we have

J70 (@) = To(p— LTI (@ =7,
k=1
k+i

so'that it is an algebraic integer divisible by (p — 1}! but not by p!if pis
sufficiently large. It follows that J; is a non-zero algebraic integer
divisible by (p — 1)!. Further, by the initial assumptions, we have

m r—1 .
J;: = —_J'—ZO tgoﬂn“'l{fi(y) (ant+l) +... + (j) ’nHJ_)}

and here each sum over ¢ can be expressed as a polynomial in «; with
rational coefficients independent of 7; for clearly, since «, ...,a,, is a
complete set of conjugates, the coefficients of f (x) can be expressed in
this form. Thus J; ... J, is rational, and so in fact a rational integer
t An algebraio number is said to be an algebraic integer if the leading coefficient in
its minimal defining polynomial is 1; if « is an algebraic number and [ is the leading

coefficient in its minimal polynomial, then la is an algebraic integer.
$ That is, tho quotiont is an algobraic integer.

2 BTN
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divisible by ((p— 1)!)». Hence we have |J;...J,| > (p—1)!. But (2)
gives " B
V< 2 Jowbul €= (lo]) < o2,

for some ¢ independent of p, and the inequalities are inconsistent if p is
sufficiently large. The contradiction proves the theorem.

The above proofs are simplified versions of the original arguments of
Hermite and Lindemann and their motivation may seem obscure;
indeed there is no explanation a priort for the introduction of the
functions I and f. A deeper insight can best be obtained by studying
the basic memoir of Hermite where, in modified form, the functions
first occurred, but it may be said that they relate to generalizations,
concerning simultaneous approximation, of the convergents in the
continued fraction expansion of e®. Further light on the topic will be
shed by Chapters 10 and 11. Lindemann’s theorem formed the summit
of the accomplishments of the last century, and our survey of the
period is herewith concluded.



2
LINEAR FORMS IN LOGARITHMS

1. Introduction

In 1900, at the International Congress of Mathematicians held
Paris, Hilbert raised, as the seventh of his famous list of 23 probler
the question whether an irrational logarithm of an algebraic numl]
to an algebraic base is transcendental. The question is capable
various alternative formulations; thus one can ask whether an ir
tional quotient of natural logarithms of algebraic numbers is tr:
scendental, or whether &/ is transcendental for any algebraic num]
o % 0,1 and any algebraic irrational #. A special case relating
logarithms of rational numbers can be traced to the writings of Eu
more than a century before, but no apparent progress had been ma
towards its solution. Indeed, Hilbert expressed the opinion that t
resolution of the problem lay farther in the future than a proof of t
Riemann hypothesis or Fermat’s last theorem.

The firstsignificant advance was made by Gelfondtin 1929. Emplc
ing interpolation techniques of the kind that he had utilized previou:
inresearches onintegralinteger-valued functions,! Gelfond showed t}
the logarithm of an algebraic number to an algebraic base cannot be
imaginary quadratic irrational, that is, o/ is transcendental for a
algebraic number « # 0,1 and any imaginary quadratic irrational
in particular, this implies that e¢” = (— 1)~ is transcendental. T
result was extended to real quadratic irrationals # by Kuzmint
1930. But it was clear that direct appeal to an interpolation series :
ef?, on which the Gelfond—-Kuzmin work was based, was not app:
priate for more general 8, and further progress awaited a new idea. T
search for the latter was concluded successfully by Gelfond' a
SchneiderY independently in 1934. The arguments they discover
were applicable for any irrational # and, though differing in det:
both depended on the construction of an auxiliary function tk
vanished at certain selected points. A similar technique had been us
a few years earlier by Siegel in the course of investigations on t
1t C.R. 189 (1929), 1224-8. } T6hoku Math. J. 30 (1929), 280-5.

§ I.A.N. 3 (1930), 683 07, | D.A.N. 2 (1934), ¢-6; .A.N. 7 (1934), 623
S J.M. 172 (1934). 65 9,

[9] 2-2
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Bessel functions.! Herewith Hilbert’s seventh problem was finally
solved.

The Gelfond-Schneider theorem shows that for any non-zero
algebraic numbers «;, ay, B, F. with loge,, loga, linearly inde-
pendent over the rationals, we have

pilog o, + fyloga, = 0.

It was natural to conjecture that an analogous theorem would hold
for arbitrarily many logarithms of algebraic numbers, and, moreover,
it was soon realized that such a result would be capable of wide
application. The conjecture was proved by the author? in 1966, and
the demonstration will be the subject of the present chapter.

Theorem 2.1. If «;, ..., &, are non-zero algebraic numbers such that’
logay, ..., loga, are linearly independent over the rationals, then 1,
logay, ...,loga, are linearly independent over the field of all.algebraic
numbers.

The proof depends on the construction of an auxiliary function of
several complex variables which generalizes the function of a single
variable employed originally by Gelfond. Functions of several variables
were utilized by Schneider! in his studies concerning Abelian integrals
but, for many years, there appeared to be severe limitations to their
serviceability in wider settings. The main difficulty concerned the
basic interpolation techniques. Work in this connexion had hitherto
always involved an extension in the order of the derivatives while
leaving the points of interpolation fixed; however, when dealing with
functions of several variables, this type of argument requires that the
points in question form a cartesian product, a condition that can
apparently be satisfied only with respect to particular multiply-
periodic functions. The proof of Theorem 2.1 involves an extrapolation
procedure, special to the present context, in which the range of inter-
polation is now extended while the order of the derivativesis reduced.
Refinements and generalizations will be discussed in the next chapter
and applications of the results to various branches of number theory
will be the theme of Chapters 4 and 5.

1 Abh. Preuss Akad. Wiss. (1929), No. 1; ef. ch. 11,

t Mathematika, 13 (1966), 204-16; 14 (1967), 102-7, 220-8.
§ Here the logarithms can take any fixed values.

{| J.M. 183 (1941), 110-28.
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2. Corollaries

Before proceeding to the proof of Theorem 2.1, we record a few
immediate corollaries.

Theorem 2.2, Any non-vanishing linear combination of logarithms
of algebraic numbers with algebraic coefficients is transcendental.

In other words, for any non-zero algebraic numbers o, ..., «, and
any algebraic numbers By, £y, ..., 8, with £, + 0 we have

Bo+pilogoy +... + B, log e, + 0.

This plainly holds for n = 0. We assume the validity for n < m, where
m is a positive integer, and proceed to prove the proposition for #n = m.
Now if logeay, ...,log e, are linearly independent over the rationals
then the result follows from Theorem 2.1. Thus we can suppose that
there exist rationals py, ..., p,, with say p, =+ 0, such that

prlogoy +... +p,loge, = 0.
Clearly we have

PBo+Frlogoy + ... + B logay) = Bo+ prlogen +... + fn log o,
where 18(’) = p,.ﬂo, ﬂ; = pr/gj"'p:i/gr (1<j<m),
and also g #+ 0, B, = 0; the required result follows by induction.

Theorem 2.3. e¢foafr...abn is transcendental for any mnom-zero
algebraic numbers oy, ..., %, Bo Prs +++s Pn-

‘Indeed, if «,,,, = efoctf ... afn were algebraic, then

'Bllogdl-l- +ﬂnlog“n—log“n+l (= _/30)

would be algebraic and non-vanishing, contrary to Theorem 2.2.
There is a natural analogue to Theorem 2.3 in the case §, = 0:

Theorem 2.4. of: ... aln is transcendental for any algebraic numbers
gy «ers Oy, Obher than O or 1, and any algebraic numbers By, ..., B, with
1, By, ...y B, linearly independent over the rationals.

For the proof, it suffices to show that for any algebraic numbers
&y, ...y, Other than 0 or 1, and any algebraic numbers £y, ..., 8,,
linearly independent over the rationals, we have

Mlogay+...+ ploge, + 0;
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in fact the theorem follows on applying this with » replaced by n 41
and B,., = — 1. The proposition plainly holds for n = 1; we assume
the validity for n < m, where m is a positive integer, and proceed to
prove the assertion for n = m. The result is an immediate consequence
of Theorem 2.1 if loga,, ...,loga, are linearly independent over the
rationals; thus we can suppose that there exist rationals py, ..., p,,, and
numbers £; as in the proof of Theorem 2.2, with now 8, = f = 0. It is
clear that if 8, ..., §,, are linearly independent over the rationals, then
so also are the £}, with j not 0 or 7, and the theorem follows by induction.

Finally, from particular cases of the above theorems, it is evident
that 7 + log « is transcendental for any algebraic number « # 0 (which
includes the transcendence of 7) and that ¢*"+# is transcendental for
any algebraic numbers «, # with # + 0 (which includes the tran-
scendence of e).

3. Notation

The remainder of the chapter is devoted to a proof of Theorem 2.1.
We suppose that the theorem is false, so that there exist algebraic
numbers Sy, fy, ..., fp, Dot all 0, such that

Bo+piloga, +...+f,loga, = 0,
and we ultimately derive a contradiction. Clearly one at least of
B .. B, is not 0 and, without loss of generality, we can suppose that
£, % 0. Since the above equation continues to hold with £} = —£,/8,
in place of B;, we can further suppose, without loss of generality, that
B, = —1; we have then
ehoohr., abrt = a,. (1)
We denote by ¢, c;, ¢y, ... positive numbers which depend only on the
o’s, f’s and the original determinations of the logarithms. By % we
signify a positive integer which exceeds a sufficiently large number ¢ as
above.
We note, for later reference, that if « is any algebraic number

satisfying Agad+ Aoy, + 4, =0,
where 4, ..., A, are rational integers with absolute values at most 4,
then, for each non-negative integer j, we have
(Adgay) = AP + AP a+...+ AP ad-1
for some rational integers A% with absolute values at most (24)7; this

is an obvious consequence of the recurrence relations

A%) = Al)Asrll_ll)_All‘mAfll ll) (0 s m < d!.? 2 d)’



NOTATION 13

where AYT? = 0. It follows that if d is the maximum of the degrees of
gy oens Oy By ovos B andifay, ... a,, by, ..., b,_, are the leading coeffi-
cients in their respective minimal polynomials, then

d—1 d—1
(a'r“r)j = Zoaﬁs) dﬁ, (br/[))r)j = tzo b%)/[))i: (2)
s= =

where the o, b)) are rational integers with absolute values at most ¢f.
For brevity we shall put

fmo, vaeny mn_l(zoa vy zn—l) = (a/azo)mo e (a/azn—l)mnﬂf(zw ey zn—l):

where f denotes an integral function and m, ..., m,,_, are non-negative
integers.

4. The auxiliary function

Our purpose now is to describe the auxiliary function ® that is funda-
mental to the proof of Theorem 2.1; it is constructed in Lemma 2
below after a preliminary result on linear equations obtained by
Dirichlet’s box principle. Basic estimates relating to ® are established
in Lemma 3 and these are then employed for the extrapolation
algorithm. Two further supplementary results are given by Lemmas 6
and 7; the former exhibits a simple, but useful, lower bound for a linear
form in logarithms, and the latter furnishes a special augmentative
polynomial. It will be seen that the inclusion of the 1in the enunciation
of Theorem 2.1, which yields the algebraic powers of ein the corollaries,
entails a relatively large amount of additional complexity in the proof;
in particular the final lemma is required essentially to deal with this
feature.

‘Lemma 1. Let M, N denote integers with N > M > 0 and let

uy; (1<i<M,1<j<N)

3

denote integers with absolute values at most U (= 1). Then there exist
integers x,,...,xy not all 0, with absolute values at most (N U)MN=D)
such that N
Zluijxj =0 (1<i< M) (3)
=

Proof. We put B = [(NU)M&-M], where, as later, [x] denotes the
integral part of x. There are (B + 1)V different sets of integers ,, ..., Ty
with 0 < #; < B (1 < j < N), and for each such set we have

~VB<y, <W,B (1<i< M),
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where y,; denotes the left-hand side of (3), and —V;, W; denote the sum
of the negative and positive u; (1 <j < N) respectively. Since
V;+ W, < NU, there are at most (NUB + 1)™ different sets y, ..., ¥y-
Now (B+1)¥VM > (NU)M and so (B+1)¥ > (NUB+1)M, Hence
there are two distinet sets a5, ..., &y which correspond to the same set
Yys -+-» Yar, and their difference gives the required solution of (3).

Lemma 2. There are integers p(dy, ..., A,), not all 0, with absolute
values at most e*, such that the function

M

q)(zO’ e n—l)

L
o A”E ; (AO’ cees An) z&OelnﬁoZooqﬁ 7, anepen-,

Ay
where v, = A, + A, 8, (1 < r < n) and L = [h2-16™], satisfies

q)mo s My 1( 50 =0 (4)

Jor all integers L with 1 < 1 < b and all non-negative integers my, ..., m,_4
with mg+ ... +m,_; < b2

Proof. 1t suffices, in view of (1), to determine the p(A,, ..., A,) such that

L
Z e B 0 A 00 A D el 7T = 0 (5)

for the above ranges of I, my, ..., m,_,, where

q(Ags Ay, 2) = "ﬁ' (’/:‘;’) Ao —1) ... Qg — g+ 1) (A, By)mto 2ho—ro,

=0
On multiplying (5) by
P = (ay...a,)lbM%... bing, (6)
e m (m,
writing vee= 3 (0 A, g,
/“r=o :u’r

and substituting from (2) for the powers of a,«, and b, 8, which result,
we obtain
a-1  d-1 d-1
T Aol ... ai = 0,

8,=0 =0 =0 ty—1=0

L L m Mo ' om
where A= X ... X X .. X P(Ag.--,4,) 0",

A,mQ  Ag=0 fiy=0 iy~ 0
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and ¢, ¢’, ¢" are given by

n
q/ — Hl {aﬁl‘“""’ agt;:)},
r=

-1
7 =TI {( " ') (b2 >"»-Wrb,°‘zz},
r
¢ = (’Z) Ao(Ao— 1) ... (Ao — fig + 1) Aot bfo Ba-rois—),
0.

Thus (4) will be satisfied if the d** equations 4(s,t) = 0hold. Now these
represent linear equations in the p(A,, ..., A,,) with integer coefficients.

LI )

Sinee I < A and (m’) < 2™, we have

He

91 < 11 {afrarh < o,

1 < T Iy,

|4"| < 2™y, (6, A,y to Dot < (cg Lyma BT,
and, by virtue of the inequalities
(Mg + 1) ... (My_y +1) < 2mottma—y g 287,
it follows easily that the coefficient of p(A,, ..., A,) in the linear form

A(s, t), namely me

Mt e
X.. 2490,
=0 fp-1=0
has absolute value at most U = (2¢;L)#* cI*. Further, there are at
most h(h? + 1) distinct sets of integers I, my, ..., m,_,, and hence there
are M < < d®*h(h?+ 1) equations A(s,t) = 0 corresponding to them.
Furthermore, there are N = (L + 1)*** unknowns p(A,, ..., A,,) and we

have N > pe-1/dn) (nt+1) > h2n+§- > 2d2nh(h2+1)n > 2M.

Thus, by Lemma 1, the equations can be solved non-trivially and the
integers p(A,, ..., A,) can be chosen to have absolute values at most

NU < h2n+2(2¢, L)W PP < et®
if & is sufficiently large, as required.
Lemma 3. Let m,, ..., m,_, be any non-negative integers with

Mo+ ...+m,_; < h?
and let f@) =0, my_ (25 2) (7)
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Then, for any number z, we have |f(2)| < &+, Further, for any
positive integer 1, either f(l) = 0 or | f(1)| > c“h3 -

Proof. The function f(2) is given by
L L N N
P,\ go e gop(}(o, e Ay) @ Ags A, 2) Y7 L Ry L Yiingt,

where g(A,, A,,,?) is defined in Lemma 2 and

0 '

P = (loga,)™... (loge, ;)™
We have

m, m
l4Rer A 2)] < (e Dymo f2f2 S ( ) = (26, Lymea],
Jo=0 Ho
|odr? .. adn®| < e, | Pym .. ymeg| < (cg Lymit-tma-y,

and the number of terms in the above multiple sum is at most A27+2;
the required estimate for | f (2)| now follows by virtue of the inequalities

L <R my+...+m,_y <B, |p(A, ..., A,)| < €.

To prove the second assertion, we begin by noting that the number
f = (P'|P)f(), where P’ is defined by (6), is an algebraic integer with
degree at most d?*. Further, by estimates as above, we see that any
conjugate of f’, obtained by substituting arbitrary conjugates for the
o,, f,, has absolute value at most cf;+%; and clearly the same bound
obtains for P’/P. Butif f’ + 0, then the normT of f' has absolute value
at least 1 and so 1] > g0+ zoam,

This gives the required result.

Lemma 4. Let J be any integer satisfying 0 < J < (8n)%. Then (4)
holds for all integers L with 1 < 1 < A1+7/8M gnd all non-negative integers

Migs ooy Moyy_q With Mg+ ... +m,_; < h227.

Proof. The result holds for J = 0 by Lemma 2. Let K be an integer
with 0 € K < (8n)? and assume that the lemma is valid for

J=0,1,.,K.
We proceed to prove the proposition for J = K + 1.

+ Tho product of the conjugates; it is plainly o rational integer.
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It suffices to show that for any integer I with Ry <! € Ry, and
any set of non-negative integers m, ..., m,_; with

Mo+ ... +my,_y € Sgi1
we have f(I) = 0, where f(2) is defined by (7) and
Ry = [W+7060], 8, = [R27] (J = 0,1,...).

By the inductive hypothesis we see that f,.(r) = 0 for all integers r, m
with 1 € r € Ry, 0 < m € Sgy; for clearly f,.(r) is given by

(0fozg+ ... +0]02, )" D .., my_,(Z0s -+ > Znt)s
evaluated at the point 2y = ... = z,_, = r, that is by
Z7n!(jo! . -jn-I!)_l (Dmo+jo, ...,mn_1+7',,_1(r’ AR 1‘),

where the sum is over all non-negative integers j,,...,5,_, with
Jo+ ... +Jp_s = m, and the derivatives here are 0 since

Mo+ ... +My,_4 +]0+ Ve +jn_1 < 2SK+1 < SK
Thus f(2)/F(z), where
F(2) = {z=1) ... e— R},

i8 regular within and on the circle € with centre the origin and radius
R = Ry, hYE, and hence, by the maximum-modulus principle,

o1F(M]| = 0[f O], (8)

where 6, @ denote respectively the upper bound of |f(z)| and the
lower bound of | F(z)| with z on C. Now clearly © > (4R)RxSz+1and, by
Lemma 3, 6 < cF*+LR. Further, we have |F(l)] < REZSF+* and, by
Lemma 3 again, either f(I) = 0 or | f(!)| > ¢g7’~LE. But, in view of (8),
the latter possibility gives

(5 )" +LR > (JAMGm)Bx Sk,
and, since K < (8n)% and
LR < h3+Ei6n) < 2E+3R . S, .
the inequality is untenable if & is sufficiently large. Hence f(I) = 0, and
the lemma follows by induction.
Lemma 5. Writing ¢(2) = (2, ..., 2), we have
|$,(0)] < exp(—A") (0 <j < B (9)
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Proof. From Lemma 4 we see that (4) holds for all integers ! and non-
negative integers my, ..., m,_, satisfying 1 <! < X and

Mo+ ... +My,_y £ Y,

where X = k%" and Y = [h2/2€@#*]. Hence, as in the proof of Lemma 4,
we obtain ¢, (r) = 0 for all integersr,m with 1 < r < X,0<m < Y.
1t follows that ¢(2)/E(z), where

E@z) ={(z—-1)...:—-X)}¥,

is regular within and on the circle I" with centre the origin and radius
R = Xp'®m, and so, by the maximum-modulus principle, we have,
for any w with |w| < X,

|pw)| < £E-1|E(w)|,

where £ and E denote respectively the upper bound of |$(z)| and the
lower bound of |E(z)| with z on I". Now clearly

|Beo)| < (2X)7F, |E| > (BR)XT,
and, by Lemma 3, £ < ¢*+LR, Hence we obtain
|$()| < cE+ER(FRMEM)-XT,
and since LR g h8nt? £ 280X Y,

it follows that |¢(w)| < e~X¥ . Further, by Cauchy’s formulae, we have

$;(0) = 5= FAl AZH-I dw,

2mi

where A denotes the circle |w| = 1 described in the positive sense, and
the expression on the right has absolute value at most j7¢~X¥, The
required estimate (9) follows at once.

Lemma 6. Forany integers ty, ..., t,, not all 0, and with absolute values
at most T', we have
|t logay +... +t,loga,| > ei”.

Proof. Let a; (1 <j < n) be the leading coefficient in the minimal
defining polynomial of &; or a;* according as ¢; > 0 or ¢; < 0. Then
w=af.. altl(ah... alr—1)

is an algebraic integer with degree at most d», and any conjugate of w,
obtained by substituting arbitrary conjugates for a,...,a,, has
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absolute value at most ¢%. If @ = 0 then
Q=tloga,+... +t,loga,

is amultiple of 274, and in fact a non-zero multiplesince log &y, ..., log «,,
are, by hypothesis, linearly independent over the rationals; hence, in
this case, the lemma is valid trivially. Otherwise the norm of w has
absolute value at least 1 and thus |w| > c¢;72". But since, for any z,
|e#— 1| < || €¥, we obtain |w| < |Q|e?lef; and hence, assuming, as
we may, that |Q| < 1, the lemma follows.

Lemma 7. Let R, S,be positive integers and let o, ..., op_, be distinct
complex numbers. Define o as the maximum of 1, |0'(,| w|ory| and
define p as the minimum of 1 and the |o,— o;| with0 < i < j < R. Then,
for any integers r,s with 0 <r < R, 0 < s < S, there exist complex
numbers w; (0 < i < RS) with absolute values at most (80/p) =S such that
the polynomial RS—1

W(z) = ij w; 2

satisfies Wi(o,) =0 for all i, j with 0 <1 < B, 0 <j < S other than
t=1r,j=s,and W(o,) = 1.

Proof. The required polynomial is given by

_ (=1 (E—opU
we = (57 z ), e 2 Te %

where Uz) = {(z—03) ... 2—0p_)}5

and C, denotes a circle described in the positive sense with centre o,
and sufficiently small radius, less than, say, p and |z—o,| for z  o,.
The proof depends on two alternative expressions for W(z). First, since
the absolute value of the integrand multiplied by |¢| decreases to 0 as
|¢] = oo we have, by Cauchy’s residue theorem,

_(e=o) UR) 1 B3 r (§—0,)
W(z) = 1 TS om j=20 foj (E~2) U(g)dé”
J+r

where Cj, like C, above, is a circle about ¢; with sufficiently small
radius. Clearly the sum over j is a rational function of z, regular at
z = o, and, since U(z) has a zero at z = o, of order S, it follows that
W(o,) = 1if j = a and 0 otherwise.
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On the other hand, from Cauchy’s formulae we obtain
& (§-0,)5U(R)
Ve = 5 [ T D ke,
where t = §—s—1, and thus
W(z) = (= 1) (1) Ul2) 2o, --»dp—1) (0, —2) 71,

where the sum is over all non-negative integers j,...,jp_y Wwith
Jo+.-+jp.1 =t and

. . E-1/(S44.,—1 _
oo i) = 1 (91 (g, yson
i+r

Now j,+ 1 lies between 1 and 8 inclusive and so obviously W(z) is a
polynomial with degree at most RS- 1. Further, we see that W(z),
like U(z), has a zero at 2 = o (¢ = r) of order S, and so W,(o;) = 0 for
all j < 8. Furthermore, it is clear that the typical factor in the product
defining » has absolute value at most 25+4i—1p—8-ji, and thus

[9(os -+ o1 Jra)| < (2[p) B Hot-Hr1 < (2]p)RS

On noting that the coefficients of (0,—z)/—* U(z) have absolute
values at most (o + 1)®5 and observing, in addition, that the number
of terms in the above sum does not exceed S%, it follows easily that the
coefficients of W(z) have absolute values at most

SR(o+ 1) (2/p)RS < (80/p)RS

and this completes the proof of the lemma.

5. Proof of main theorem
We proceed to show that the inequalities (9) obtained in Lemma 5
cannot all be valid, and the contradiction will establish Theorem 2.1.
We begin by writing S = L + 1, R = 8*, and noting that any integer
¢ with 0 < 7 < RS can be expressed uniquely in the form
T =Ag+ A S+... +A,87,
where Ay, ..., A, denote integers between 0 and L inclusive. For each

such 7 we define v,=2Ag D=0 A,),

and we put V= A dogay +...+A, log e,

RS -1
Then clearly P() = 3 pRiete (10)
i 0
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Further, from Lemma 6, any two r; which correspond to distinct sets
Ay ..., A, differ by at least ¢%; in particular, exactly R of the ¥, are
distinet, and we denote the different values, in some order, by
Oy, .oy Oy If 0, p are defined as in Lemma 7, we have then o < ¢y L
and p > cpL.

Let now ¢t be any suffix such that p, + 0, let s = v, let r be that
suffix for which ¥, = o,, and let W(z) denote the polynomial given by
Lemma 7. By the properties of W(z) specified in thelemma, we see that

RS-1
P = ¢§0 2 W, ().

Further, by Leibnitz’s theorem, we have

RS-1

N . BRS-1 [ i
mf(‘/fi) = '2 _9(_9—1)...(_9—vi+1)wjz/f£—vi = ;o w; [a-z—] (zweil'iz)]Fo’

and thus from (10) we obtain
RS-1

p= 2 w;$4(0).
j=0

Now RS g h#*+2and so, from Lemma 5, it follows that (9) holds for all
J with 0 < j < RS. Further, by Lemma 7, we have
lwj| < (80/p)PS < (8eyy Lefs) S < ofg" ™.
Hence, since |p;] > 1, we conclude that
0 < log RS + ¢y, h3nt4 — 87,

The inequality is plainly impossible if % is sufficiently large and the
contradiction proves the theorem.
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LOWER BOUNDS
FOR LINEAR FORMS

1. Introduction

Various conditions were obtained in Chapter 2 for the non-vanishing
of the linear form
A =B+ B logay+... + 8, log o,

where the o’s and f’s denote algebraic numbers; in particular, it
suffices if B, + 0, orif 1, B,, ..., B, are linearly independent over the
rationals, assuming that the o’s are not 0 or 1. In the present chapter,
quantitative extensions of the work will be discussed, giving positive
lower bounds for |A| in terms of the degrees and heights of the o’s and
B’s; it will be recalled from Chapter 1 that the height of an algebraic
number is the maximum of the absolute values of the relatively prime
integer coefficients in its minimal defining polynomial. Theorems of
this kind were first proved by Morduchai-Boltovskoj' in 1923, in the
case n = 1, and by Gelfond?* in 1935, in the casen = 2, #, = 0. A lower
bound for |A}], valid for arbitrary n, was established in 1966, on the
basis of the work described in Chapter 2, and a variety of improve-
ments have been obtained subsequently. In particular, when the o’s
and also the degrees of the £’s are regarded as fixed, a result that is
essentially best possible has now been derived.*

Theorem 3.1. Let «y,...,a, be non-zero algebraic numbers with
degrees at most d and heights at most A. Further, let B, ..., [, be
algebraic numbers with degrees at most d and heights at most B (> 2).
Then either A =0 or |A| > B-C, where C is an effectively computable
number depending only on n, d, A and the original determinations of the
logarithms.

The estimate for C takes the form C’ (log A)%, where x depends only
on n, and ¢’ depends only on » and d. In the case when g, = 0 and
B ..., B, are rational integers, it has been shown that in fact the
theorem holds with € = C’'Qlog Q, where Q = (log 4)*; and moreover,

+ C.R. 176 (1923), 724-1. t D.A.N. 2 (1935), 177-82.
§ Mat. Sbornik, 76 (1968), 304-19; 77 (1068), 423-36 (N. I. Foldman).
[22]
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if it is assumed that the height of &; does not exceed A4; (> 4), then
Q can be taken as log 4, ...log 4,. Still stronger results have been
obtained in the special case, of considerable importance in applications,
when one of the &’s, say «,,, has alarge height relative to the remainder.
Indeed it has been proved that if «y, ..., &,_; and «, have heights at
most A’ and A (> 4) respectively, then

|A| > (Blog A)—Cleg 4,

where C' > 0 is effectively computable in terms of A’, » and d only.}
Further, when g, = Oand f, ..., §,, are rational integers, the bracketed
factor log 4 has been eliminated to yield

IAI > (-log 4108 B,

which is clearly best possible with respect to A when B is fixed, and
with respect to B when A4 is fixed.$ Furthermore, under the additional
specialization 8, = — 1, it has been shown that

|A| > A=Ce—B

for any € > 0, where now C depends only on A’, n, d and €." As we
shall see later, these results have particular value in connexion with
the study of Diophantine problems.

It will be noted that, from the case n = 1 of Theorem 3.1, we have

[loge—pB| > B-©

for any algebraic number ¢, not 0 or 1, and for all algebraic numbers
with degrees at most d and heights at most B (> 2), where C depends
only on d and «; more especially we have

|m—B| > B¢

for some O depending only on d. Estimates of the latter kind with, in
fact, precise values for O were derived long before the general result.
Indeed Feldman,? extending work of Mahler,™t obtained the first of
these inequalities with C of order (dlogd)?, assuming that B is
sufficiently large, and the second with C of order dlogd. Moreover,
when f is rational, some striking inequalities of the type

|m—plg| > %2,
t Acta Arith, 27 (1974), 247-52.
t Diophantine approximation and its applications (Academic Press, 1973) pp. 1-23.
§ Acta Arith. 21 (1972), 117-29.
|| Acta Arith. 24 (1978), 33-6 9 1.A.N. 24 (1960), 357-68, 475-92,

1 J.M. 166 (1932), 118-50,

3 BTN
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valid for all rationals p/g (¢ > 2), were established by Mahler,t and,
more recently, by similar methods, values of C' arbitrarily close to the
conjecturally best possible d+1 were derived in connexion with
approximations to the logarithms of certain rational «.* Several
further estimates of this character, classically termed transcendence
measures, are furnished by the results cited after Theorem 3.1. They
imply, for instance, that, subject to the hypotheses of Theorems 2.3 or

2.4, we have |efoatfs ... afn—y| > H-Cloglog H

for all algebraic numbers ¥ with height at most H (> 4), where C
depends only on the a’s, £’s and the degree of v; in particular

Ien_p/ql > q—cloglogq

for all rationals p/q (¢ > 4), where ¢ denotes an absolute constant, and
this is the best measure of irrationality for e” obtained to date.

We shall prove here only Theorem 3.1; the demonstrations of the
other results are similar, though the underlying auxiliary functions
are modified, theinductive nature of the argument is more complicated,
and certain lemmas appertaining to Kummer theory are employed
in the latter part of the exposition in place of the determinant that
oceurs here. The reader is referred to the original memoirs for details.
Applications of the results to various branches of number theory will
be discussed in subsequent chapters.

2. Preliminaries
We begin with some observations concerning the heights of algebraic
numbers. First we note that if « is an algebraic number with degree d
and height H then |a| < dH; for if « satisfies
a0t a2 1+, +a; =0,
where the a; denote rational integers with absolute values at most H
and @, > 1, then either || < 1 or
let] < |aget] = |ay +aza+... +a,a~%1| < dH.

Secondly we observe that if &, § are algebraic numbers with degrees at
most d and heights at most H, then «f and a + # have degrees at most
d? and heights at most H’, where log H'[log H is bounded above by a

t+ Philos. Trans. Roy. Soc. London, A 245 (1953), 371-98: I.M. 15 (1953), 30-42.
1 Acta Arith. 10 (1964), 315 -23.
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number depending only on d. For let a®, 9 denote the respective
conjugates of a and f. Then aff and o + £ are zeros of the polynomials

(@) 11 (z—a989), (@) I (z—a®—4)
.5 LY

respectively, which clearly have integer coefficients and degrees at
most d%. The zeros of the minimal polynomials of «f and a + § are thus
given by some subsets of the a®8 and a®+ 449, and the leading
coefficients divide (ab)?". The assertion now follows on noting that the
a®, B have absolute values at most dH.

For any integers &k > 1, | > 0 we shall signify by v(l; k) the least
common multiple of I+ 1, ...,l+ k. Further, for brevity, we shall write

A@x; k) = (@+1) ... (@ +k)/k,

and we shall put A(x; k,I,m) = ;nl—';?":n (A(z; b))

The functions have the following properties:

Lemma 1. When x is a positive integer thenalso (v(x; k)™ A(z; k, 1, m)
is @ positive integer and we have

Ade; k,1,m) < 4640, p(; k) < {o(o+ k)[R

for some absolute constant c.

Proof. First we observe that
A k,1,m) = (Alx; b)) Z{(@ +Jy) --- @ +n)}

where the summation is over all selections of m integers jy, ..., j,, from
the set 1, ..., k repeated ! times, and the right-hand side is read as 0 if
m > kl. Clearly x+j, divides v(x; k) for each r, and since certainly
A(z; k) is a rational integer, the first part of the proposition follows.
Further, we see that

A@w; k,1,m) < (x-llc-k)'(kl) < QMa+hyrkl
m

and this gives the required estimate.

To obtain the estimate for v, we write v(z; k) = »'»", where all prime
factors of ¥, v" are < k and > k respectively. Since the exponent to
which a prime p divides 1’ is at most log (z + k)/log p, we have

logv' < Zlog(x+k) < c'klog (z+k)/log k,



26 LOWER BOUNDS FOR LINEAR FORMS

where the summationis over all primesp < k,and ¢’,likec,c”,c"” below,
denotes an absolute constant. Now we can assume that & > ¢" and
that > ¢"k for some sufficiently large ¢”, for otherwise the desired
conclusion would follow at once from the simple upper bounds (z + k)*
and ¢*t* for v(x; k). Thus we see that
v’ " (e + k)Y

But clearly v” divides A(x; k), and this does not exceed (z+ k)*/k!;
the required estimate is now apparent. The exponent 2 can in fact be
reduced easily to 1, which is best possible, but the refinement is not
needed here.

We prove next a simple lemma, giving a special basis for the space of
polynomials with bounded degree.

Lemma 2. If P(x) is a polynomial with degree n > 0 andif K is a
field containing its coefficients then, for any integer m with 0 < m < n, the
polynomials P(x), P(x+ 1), ..., P(x+m) and 1, z, ..., "™ qre linearly
independent over K.

Proof. The assertion is readily verified for n = 1. We assume the
result for n = n’ and we proceed to prove the validity for n = n’ + 1.
Suppose therefore that 0 < m < »n'+ 1, that P(x) is a polynomial with
degree n’ + 1 and that

R(x) = AgP(x) + A, P(x+ 1)+ ... + A, P(z+m)
has degree at most n' —m for some elements A; of K. We have

R(z) = (A0+...+Am)P(x+m+1)+§o(;\o+A1+...+;\,)Q(x+j),

where Q(x) = P(x)— P(x+1). But Q(x) has degree n’ and since
P(xz+m + 1) has degree n’ + 1 we see that Ay+ ... +A,, = 0. It follows
from the inductive hypothesis that

Ao+ A 4. +A; =0 (0<j<m),

and s0 Ay = ... = A, = 0, as required.
Finally we establish the non-vanishing of a particular determinant;
the result will play a similar réle to Lemma 7 of Chapter 2.

Lemma 3. If w,, ..., w,_, are any distinct non-zero complex numbers
then the determinant of order kl with '} in the (3 + 1)-th row and (j + 1)-th
column, wherej =r+3k (0 < r <k, 0 € s <), 48 not zero.t

t Here ¢ = 1 for all { including ¢ = 0.
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Proof. The determinant Q in question can plainly be expressed as a
polynomial Q(w,, ..., w,_;) in the w’s with integer coefficients. We

write Q) = Qz, 0y, ..., 0,_4),

and we observe from the Laplace expansion of Q, taking minors
formed from the first k columns, that Q(z) is a polynomial in z with
degree at most k
3, (K —j) = k¥ — h(k+ 1),
i=1

and moreover that it has a factor z#*-1, We ghall prove in a moment
that it also has a factor (2 —w,)** for each s with 1 < s < 1. This gives

-1
Q(z) = Ce#¢D [T (2—w,)¥,
8=1

where C is the coefficient of the highest power of z in (z). It is easily
verified that C is the product of the Vandermonde determinant of
order k with typical element (k{l—1)+¢), and the determinant of
order k(l— 1) formed like Q, that is, with typical element #*w¢, where
now 1 € 8 < l. The lemma follows by induction.

To prove the above proposition we begin by noting that the mth
derivative Q,,(z) of Q(z) is given by

ZQ'(mO, oy Mp_q, z),

where the summation is over all non-negative integers mg, ..., my_4
with sum m, and Q'(m,, ..., m,_,,?) is obtained from Q(z) by replacing
the element in the (¢ + 1)th row and (j + 1)th column for j < & by

G —1) .. (§—m, + 1) 25,
It suffices now to prove that if m < k% then the 2k polynomials
1,z,...,21and

ertl(e—1)... (z—m,+1) (0<r<k)

are linearly dependent; for then some non-trivial linear combination
of the 2k columns of Q'(my, ..., my_,, ©,), given by

j<k and j=r+(s—1)k,

vanishes and so Q, (w,) = 0. To establish the linear dependence we
arrange the degrees of the polynomials in ascending order, say
ny; € g < ... € Mg, and we observe that their sum is

k-1
e(e— 1)+ X (r+m,) =k(k—1)+m < 2k*— L.
r=0
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Thus we have n; < j—1 for some j; this implies that there are j poly-
nomials amongst the original set each with degree at most j—2, and
these are certainly linearly dependent. The above argument clearly
yields an explicit value for Q, but only the non-vanishing is required
here.

3. The auxiliary function

We come now to the proof of Theorem 3.1 and we agsume accordingly
that «,, ..., @, arenon-zero algebraic numbers with degrees and heights
at most d and A4 respectively. By C, ¢, ¢;, ¢,, ... we signify numbers,
greater than 1, that depend only on #, d, 4 and the given determina-
tions of the logarithms of the a’s. We suppose that g, ...,8,_, are
algebraic numbers with degrees and heights at most d and B (> 2)
respectively such that

lﬁ0+ﬁllogal+ +ﬁn—110g°‘n—1—log°‘n| < B-, (1)

for some sufficiently large C, and we proceed to show that there exist
then rational integers bj,...,b,, not all 0, with absolute values at
most ¢, satisfying biloge, +... +b,loge, = 0. (2)
An inductive argument will then complete the proof of the theorem.

The subsequent work rests on the construction of an auxiliary
function analogous to that obtained in Lemma 2 of Chapter 2. We
signify by k an integer exceeding a sufficiently large number ¢ as above,
and we write

h=[log(kB)], Ly=h—1, L=1ILy=..=L,=[kYm),

We adopt the notation of Chapter 2 with regard to partial derivatives.

Lemma 4. There are integers p(A_y, ..., A,), not all 0, with absolute
values at most c2*, such that the function

Lo, L.
D(2g, oesZpg) = 2 oo 2 PA_g . A)
A=0 =0
X (A(zg + A_p; R))otletnbotaqi#r |, gfnpon-t,

where v, = A, + A, 0, (1 € r < n), satisfies

l®mo,....mn_1(l’ RS B-ic (3)
for all integersl with 1 < 1 < h and all non-negative integersmy, ..., m, _;
with mg+ ... +m,_; < k.
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Proof. We determine the p(A_y, ..., A,) such that
L-,
B BP0 A g A A D ol e = 0
(4)
for the above ranges of I and m,, ..., m,_;, where

My
(A A hn?) = 3 (Z“)ﬂO!A(z+A_1; B o 1, o) (A Bo)o.

#o=0
We shall verify subsequently that (4) implies (3). Follow'ing the proof
of Lemma 2 of Chapter 2, and defining the a’s and b’s and P’ as there,
we derive the same equation involving summation overs,, ..., 8,, % .-.,
t,_; as arises there, but with

Ly Ly

My Mn~1
A, = X ... 3 X ..o X2 p(Ay, - A)0"Y,
A_=0 An=0 ptg=0 fpp—=0
where now

0" = (712) 1ot B+ Ao o Ay 1, ) X robgiebi v

and the b have absolute values at most (2B)7, Thus we conclude that
(4) will be satisfied if the d*® equations 4(s,t) = 0 hold. Now these
represent M < d*h(k+ 1) linear equations in the

N = (L, +1)...(L,+1)
unknowns p(A_y, ..., A,,). Further, Lemma 1 shows that, after multi-

plying by (»(0;3k))™, the coefficients in these equations will be
rational integers. Furthermore we have

A+ 2 3 b A0+ 1, 1) < 5
and, since kB < "1, we see that
|qr| < th, |qlll < ezh(m1+...+mn_1),

" 2o (g b Yo (2BA, Vo=t ¢l  e2hmoclh,
q Ko n) ( n) 3 3

Since also »(0; 3k) < ¢k, it follows that the coefficients have absolute
values at most U = c’”c Now N > hkntt > 2M and hence, by Lemma 1
of Chapter 2, the system of equations A4(s,t) = 0 can be solved non-
trivially and the integers p(A_,, ..., A,,) can be chosen to have absolute
values at most NU < chk.

It remains only to verify that (4) implies (3). Now the left-hand side
of (4) is obtained from the number on the left of (3), omitting modulus
signs and a factor

P = (logo,)™... (loga,_,)™ 1,
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by substituting «, for «, = eboafr ... afn. From (1) we have
[log &y, —loga,| < B—C,

for some value of the first logarithm and since, for any complex
number z, |¢¢— 1| < |2| ¢¥, we obtain

|otn, — et | < BHC, (5)
Also we have |atptnt — alel] < eFlay, —ayl,
and estimates similar to those employed above show that
Pl <k, 1000 A D] < 5190, ] < e, o] < o

Thus we see that the number on the left of (3) is at most Ncl¥B-1C.
But clearly N < e?* and h < log(kB), and hence (3) follows if
C > cklogk.
Lemma 5. Let my, ..., m,_; be any non-negative integers with
Mo+ .. +My_y S K,
and let f@)=Qp . ;mp B eees?)-

Then, for any number z, wehave | f(2) | < Mt LI, Further, for anyinteger 1
with b < 1 < k™, either | f(I)| < B-2C or

IF ()| > cpht+ g ami~Lt, (6)

Proof. The function f(z) is given by

L, In
P 3 ... 2 pAg . A) 2(Ay, A Ay, 2)

A—y=0 An=0
X eAnﬂozoql"f' L oYnepE My

where P and g(A_;, Ay, A, 2) are defined asin Lemma 4. Now (5) 1mplies
that |a,?| < ¢l and clearly

ofi? ... agns?| < offd.
Furthermore, since |2+ A5 < |21+
we deduce from Lemma 1 that
|Az+A_g; by A+ 1, 10)] < cBO+M,
This gives |g(A_1, Ag, Ay 2)| < ePmochlelth),

and the required estimate now follows easily as in the latter part of the
proof of Lemma 4.
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To prove the second assertion, webegin by noting that the expression
on the left of (4), say @, is an algebraic number with degree at most d?”.
Further, by estimates similar to those given above, it isreadily verified
that each conjugate of @, obtained by substituting arbitrary con-
jugates for the o’s and f’s, has absolute value at most c?f+%%, Further-
more, from Lemma 1, we see that on multiplying @ by

(v(T5 2R))™ P’ < (crpl/h)*M™o o,
one obtains an algebraic integer. Hence we conclude that either
Q@=0or Q| > c* T (1 h)—Cushmo,

Since m, < k, the number on the right of the last inequality exceeds
the right-hand side of (6) for some ¢;,. Further, as above, we deduce
easily from (5) that P—1f(l) differs from @ by at most ¢k B—%C. But if
I < hk®» and C' > k®»+2, then this is at most $|@Q), and hence, if Q + 0,
we obtain |f(l)] > }|PQ|, which gives (6).

Lemma 6. Suppose that 0 < € < ¢ for some sufficiently large c.
Then, for any integer J with 0 < J < 8n/e, (3) 18 satusfied for all integers
with 1 <1< hkV and all non-negative integers my,...,m,_; with
Mo+ ... +My 3 < k/27.

Proof. The lemma holds for J = 0 by Lemma 4. We suppose that K is
an integer with 0 < K < (8n/e)— 1 and we assume that the lemma
has been verified for J = 0,1,..., K. We proceed to prove the pro-
position for J = K + 1.

It suffices to show that foranyinteger I with B < I < Rx,,andany
set of non-negative integers my, ..., m,_, with my+... + m,_; < Sg 4,
we have |f(l)] < B-3C, where f(2) is defined as in Lemma 5, and

R; =[hk7], S;=1[k/27] (J=0,1,...).
From our inductive hypothesis we deduce, as in Lemma 4 of Chapter 2,
Bt ] <wBAC (1<r <R 0<m< S (D)
We write, for brevity,

F@) ={(z—1)... G~ Rp)*,
where 8§ = Sg,, and we denote by I the circle in the complex plane,
described in the positive sense, with centre the origin and radius
R =Ry, kVe By Cauchy’s residue theorem we have

IJ' fRydz _f() 1 B 5 fur)[ (z=1"de
r

W) G-DFE ~ O I Zinse ml Jn =D Gy O
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where I', denotes the circle in the complex plane, described in the
positive sense, with centre r and radius §; for the residue of the pole
of the integrand on the left at z = r is given by

1 d% [(2=1)5*1f(2)
EEZ’S{ (z—1) F(z) }’

evaluated at z = 7, and the integral over I', on the right is given by

2wy dS ™ [ (z—r)SHL
(S8 —m)! dz8—m {(z——l) F(z)}’

again evaluated at z = r, and (8) now follows by Leibnitz’s theorem.
Since, for z on T},

[z—r)"F(2)] < $(Bg—7— 1)} (r—2)}5 < 8BaS(Re!)™S5,
we deduce from (7) that the absolute value of the double sum on the
right of (8) is at most
Ry (8 + 1) 8BxS+1 (R, 1)-S-1 B0,
Further, for Bx <1< Rg 4, we have
|[F)| = {0— 1)/ —Rg— 1)1}5+ < (2Br1R )5+,

and, since Ry, < hik8", we see that if (6) holds then |f(l)| > B~#C,
whence the number on the right of (8) exceeds £ | f(1)/F(l)|. We proceed
to show that the assumption that (6) is valid leads to a contradiction.

Let 6 and © denote respectively the upper bound of |f(z)| and the
lower bound of | F(z)| with z on I. Since 2|z — | with z on T exceeds the
the radius of ', we obtain from (8)

46|F(Q)| > 0|f 1) (9)
Now clearly we have ©® > (}R)ExS+D and thus

log (O |F(1)|~) > R (S+ 1)log (3k1Em), (10)
Further, from Lemma 5, we see that 8 < cZ+ZF and so, by virtue of (6),
log (6f()]™) < cos{LR + hklog (R 4/R)}. (11)

But the number on the right of (10) is at least
2-K-8p—1pfK+l]og k,
and that on the right of (11) is at most
c,,hk{e(K + 1) logk + koKt 1)—1/(31')}_
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If e > ¢ > 27ncy; and k is sufficiently large, the estimates are plainly
inconsistent. The contradiction implies the validity of (3) and the
lemma follows by induection.

Lemma 7. For all integers l with 0 < 1 < hkA™ we have

L,
3 Py A ACy + 1l B il . ool = 0,

A=0 Aiz0
(12)
Proof. From Lemma 6 we see that (3) holds for all integers ! with
1 €1 € X and all non-negative integers my, ..., m,_; with
M+ oo +My_y < Y,
where X = [hk'™], Y = [c3 k],
and ¢,y = 287, It follows as in the proof of Lemma 6 that
J(z)=D(z,...,2)
satisfies [fn()] <n*B3C (1<r<X,0<m<7Y). (13)
Now let [ be any integer with 0 < I < k4" and define
E@) ={r-1)...=X)¥H,

with the proviso that the factor (z—1/k) is excluded if I/k is an integer.
Denoting by I' the circle in the complex plane, described in the
positive sense, with centre the origin and radius R = XkY6", we deduce
from Cauchy’s residue theorem

L f@d UYL & L) e
2mi ) e - B@)  EE) 2mr Lo ml Jr, Gk EGY

where the dash signifies that r = [/k, if an integer, is excluded from the
summation, and I', denotes the circle in the complex plane, described
in the positive sense, with centre r and radius 1/(2k). Since, forz on I',,

[(z—r)™E(z)| < {(8AX) (X —r—1)! (r—2)1}7F-1 < 3XV(X})-¥ 1,

it follows from (13) that the absolute value of the double sum on the
right of the above equation is at most

X(Y +1)83X¥ (X 1)-¥-1 B-i0,
Further, by virtueof Lemma 5, we have, for any zon T, | f(z)| < ciF+LE,
and it is clear that |B@)| > GRYX-D@+,

|E(R)| < (2X)XT+D g XWX )T+,
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Thus we obtain
|£ k)| < clier LR (8-sgvem)-X¥ 4. B10,
and, since Lk < k, we deduce easily that the number on the right
is at most e=XY .
Now clearly the left-hand side of (12), say @, is an algebraic number

with degree at most (dk)”, and each conjugate has absolute value at
most c2¥". Further, it is readily verified that on multiplying @ by

hltn+1
(@ ... @) RMEHD gl

one obtains an algebraic integer; for certainly the denominator of
either k*/h! or A(A_y+1/k; h), expressed in lowest terms, is free of a
given prime p according as p does or does not divide k. Thus, if @ =+ 0,
we have |@| > cz"*™. But it is easily seen from (5) that

lQ—F(t/k)| < BC,

whence |f(I/k)| > 4|@Q|. The estimate for |@| given above is plainly
inconsistent with the upper bound ¢=X¥ for |f(l/k)| obtained earlier,
and thus we conclude that @ = 0, as required.

4. Proof of main theorem
First we observe that, by virtue of Lemma 2, the polynomials

(AQA 4z B))ott (0 <Ay < Ly, 0 <Ay < Ly)

are linearly independent over the rationals. Thus, on writing

L., r

Z Z p(/\—h n) (A(/\-l +; h))A‘H—l = Z p'(/\', Al’ e A’n) wN:
A3=0 A,=0 =0
where L’ = h(L + 1), weseethat oneatleastofthe L” = (L' +1) (L + 1)
numbers p’(A’, A,, ..., A,,) is not 0. Now (12) can be written in the form

35 o T 0N M) U (@ b = 0
A=0 am0 =0
and, by Lemma 7, the equation holds in particular for 0 < I < L". It
follows that the determinant of order L”, given by the terms involving
! only, vanishes. But the determinant is of the kind indicated in
Lemma, 3, and thus we conclude that

ajilk . alnlk = ahik .., aqn'k
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for some distinect sets A, ..., A, and Aj, ..., A;,. This gives
bijlogo, + ... +b, loga, = (2mi) jk

for some rationalinteger j, whereb, = A, — A,. Clearly we have|b,| < 2L,
and since L < kY4 jt follows that the number on the left has
absolute value less than 27k. Hence we conclude that j = 0, and so
(2) holds, as required.

The proof of the theorem is now completed by induction. Suppose
that By, ..., B, are given as in the enunciation and that 0 < |A| < B-%
for some sufficiently large C. Then one at least of g, ..., 8, is not 0,
and we shall assume that in fact 8, + 0. By the preliminary observa-
tions in §2, we see that (1) holds with £; (1 < j < n) replaced by
B; = — /B, and further that the #;have degrees at most d* and heights
at most B’ < B¢ for some ¢ depending only on d. Hence we conclude
that (2) holdsforsomebdy, ..., b, asindicated in § 3. Nowifb, + 0 we have

0 < |A| <¢;B€,
where A’ is obtained from A by replacing £; with
i =bf=bif (0<j<mn),

b; being defined as 0. Further, the observations in § 2 show that 8} has
degree at most d? and height at most B” < B¢ for some ¢ = ¢(n,d, 4).
Furthermore we have g, = 0. But the theorem is plainly valid for
n = 0, and if we assume that it holds for fewer than » logarithms then
the above shows that it will also hold for = logarithms. This establishes
the result.

It will be noted that the inductive argument would not be needed if
logay, ...,loge, were linearly independent over the rationals, and
moreover Lemma 7 would not be required if «,, ..., a2, were multipli-
catively independent.



4
DIOPHANTINE EQUATIONS

1. Introduction

Diophantine analysis pertains, in general terms, to the study of the
solubility of equations in integers. Although researches in this field
have their roots in antiquity and a history of the subject amounts,
more or less, to a history of mathematics itself, it is only in relatively
recent times that there have emerged any general theories, and we
shall accordingly begin our discussion in 1900 by referring again to
Hilbert’s famous list of problems.

The tenth of these asked for a universal algorithm for deciding
whether or not a given Diophantine equation, that is, an equation
flxy, ..., 2z,) = 0, where f denotes a polynomial with integer coefficients,
is soluble in integers ,, ..., z,. Though Hilbert posed his question in
terms of solubility, there are, of course, many other sorts of informa-
tion that one might like to have in this connexion; for instance, one
might enquire as to whether a particular equation has infinitely
many solutions, or one might seek some description of the distribution
or size of the solutions. In 1970, Matijasevie,” developing work of
Davis, Robinson and Putnam,* proved that a general algorithm of
the type sought by Hilbert does not in fact exist. A more realistic
problem arises, however, if one limits the number of variables, and for,
in particular, polynomials in two unknowns our knowledge is now
quite substantial.

A full account of the early results in this field is furnished by
Dickson’s celebrated History of the theory of numbers; here references
are given to a diverse multitude of Diophantine problems that were
investigated by a wide variety of ad hoc methods mainly during the
last two centuries. The first major advance towards a coherent theory
was made by Thue! in 1909 when he proved that the equation
F(x,y) = m, where F denotes an irreducible binary form with integer
coefficients and degree at least 3, possesses only a finite number of
solutions in integers z, y. Thue established the result by way of his

+ D.A.N. 191 (1970), 279-82. t Ann. Math. 74 (1961), 425-36.
§ J.M. 135 (1909), 284-305,

[36]
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fundamental studies on rational approximations to algebraic numbers;
on writing the equation in the form

a(x—oy) ... (x—o,y) =m,

one sees that one of the zeros a of F(x, 1) has a rational approximation
zly (y > 0)with |a — 2/y| < ¢/y™ for some ¢ depending only on F and m,
and Thue showed that this is impossible if y is sufficiently large.t
Thue’s work was much extended by Siegel* in 1929; Siegel proved that
the equation f(x,y) = 0, where f denotes a polynomial with integer
coefficients, has only a finite number of solutions in integers z, y if the
curve it represents has genus 1 or genus 0 and at least three infinite
valuations; otherwise the curve can be parameterized and there are
then infinitely many so-called ‘ganzartige’ solutions, that is, algebraic
solutions with econstant denominators. Siegel’s work depended upon,
amongst other things, an improved version of Thue’s approximation
result which he obtained in 1921,% and the famous Mordell-Weil
theorem, ! proved in 1928, on the finiteness of the basis of the group of
rational points on the curve. The work of Thue and Siegel satisfactorily
settles the question as to which curves possess only finitely many
integer points and, moreover, it yields an estimate for the number of
points when finite. But it throws no light on the basic Hilbert problem
as to whether or not such points exist and, even less therefore, does it
provide an algorithm for determining their totality; for the arguments
depend on an assumption, made at the outset, that the equation has
at least one large solution. and this is purely hypothetical. Another
proof of Thue’s theorem, under a mild restrietion, was given by
Skolem? in 1935 by means of a p-adic argument very different from
the original, but here the work depends on the compaectness property
of the p-adic integers and so is again non-effective.

Our purpose here is to apply the work of Chapter 3 to effectively
resolve a wide class of Diophantine equations. In particular we shall
treat the Thue equation F(z,y) = m defined over any algebraic
number field, the famous Mordell equation y® = 2+ %, to which,
incidentally, there attaches a history dating back to Bachet in 1621,
and we shall obtain an effective algorithm for determining all the
integer points on an arbitrary curve of genus 1. Our theorems will be
proved in an essentially qualitative form, but it will be apparent that

1 Seo Chaptor 7. t Abh. Preuss. Akad. Wiss. (1929), no. 1.
§ M.Z. 10 (1921), 173-213. || Acta Math. 53 (1928), 281-315.
T M.A. 111 (1935), 399-424.
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they can be adapted to yield explicit bounds for the sizes of all the
solutions of the equations. A summary of quantitative aspects of the
work is given in the last section.

2. The Thue equation

Let K be an algebraic number field with degree d, let «y, ...,¢, ben > 8
distinct algebraic integers in K, and let x4 be any non-zero algebraic
integer in K. We prove:

Theorem 4.1. The equation
(X—Y)...( X—,Y)=4p

has only a finite number of solutions in algebraic integers X, Y in K and
these can be effectively determined.

We define the size of any algebraic integer € in K as the maximum
of the absolute values of its conjugates, and we signify the size of 6
by ||0]]. With this notation, we shall in fact show how one can obtain
an explicit bound for [|X|| and |} Y|| for all X, ¥ as above. The bound
can be expressed in terms of d and the maximum of the heights of -
&y, +.., &y, 4 and some algebraic integer generating K; we shall denote
by ¢,, ¢y, ... positive numbers that can be specified in terms of these
quantities only. We shall assume that K has s conjugate real fields
and 2t conjugate complex fields so that d = s+ 2¢; further we shall
signify by 6,...,09 the conjugates of any element 6 of K, with
09, ..., 0@ real and 06+V, .., 0®+) the complex conjugates of GE++D, |
0@ respectively. The subsequent arguments rest on the well-known
result, dating back to Dirichlet, that there exist r = s+¢—1 units
M -+ 7y in K such that

log 7P| <e; (1<4,j<7)

and |A| > ¢,, where A denotes the determinant of order r with
log| 7| in the ith row and jth column.t
We supposenow that X, Y are any algebraic integers in K satisfying
the given equation and we write, for brevity,
fi=X—-0,Y (1<i<m).
We denote by Ng; the field norm of 8, and we put m; = |Ng,|, so that
my ... m, = |Nu|. We proceed first to show that an associate y, of g,

t+ Cf. Hocko (Bibliography).
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can be determined such that
[log [y@| <e; (1 <j<d). (1)

This follows in fact from the observation that every point P in r-dimen-
sional Euclidean space occurs within a distance ¢, of some point of the
lattice with basis

(log [7%], ..., log[7{?]) (1 < i <7).
On taking P as the point
(log | £}, .., log | A7),
we deduce that there exist rational integers b,- .., b, such that
= fypia... (2)
satisfies (1) for 1 < j < r, withc,in place of ¢5, and since
lyd+0| = [¥?| (s <j < s8+0),

the same holds for 1 < j < d except possibly forj = s+tandj = s+ 2¢
(only one of which exists if £ = 0). But we have

eyl =my, 1<my < [Np| <o,
whence (1) holds for all j, as required.

Now let H; = max |b;;| and let 7 be a suffix for which H, = max H,.
The equations

log |y B8] = by log 9] +... + by, log |79 (1 <j<7)

serve to express each number Ab,; as a linear combination of the
numbers on the left with coefficients given by cofactors of A, and thus
the maximum of the absolute values of these numbers exceeds cg/f;.
Let the maximum be given by j = J. Then from (1) we have

|log|A"[| = |log | B yi"| +1og |[v{P|| > colly—cs,
and, since [ ... B®| = m,, it follows that
log || < — (ceH;— ¢y —log my)/(d—1)
for some h,. Thus, ifH; > ¢,, wehave || < e~¢Hi for some k. Further,
since BB =y,

we obtain |8{¥| > ¢, for some k + 1. We take j to be any suffix other
than k or I; this exists since, by hypothesis, n > 3.

4 BTN
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We may now, for simplicity, omit the superscript & and assume that
o = o, M = B,. From the identity

(o — ) B + (g —ay) B+ (¢ — o) By = 0,

we obtain i pbr—o = w,
where by =byy—b;; (1<s<T),
o= (04— 04) 0= (o — ;) ﬁz?’k'
(o —a) vy (04— o) B

On noting that, for any complex number z, the inequality [e¢—1| <

implies that le—ibn| < 4|ee—1],

for some rational integer b, we deduce easily, on taking
z=>b,logn,+...+b,logn,—loga,

where the logarithms have their principal values, that, if |w/«| < }
then [A| < 4|w/a|, where A = z—blog(—1). Clearly & + 0 and so also
A + 0. Further we see that |b;| < 2H, for all j, and so the imaginary
part of z has absolute value at most #B, where B = 4rH,. Thus we
have |b| < B, and certainly |b;| < B. Furthermore, from the estimates
for B, = A and B, = A" given above, we see that, if H; > c,y, then

dofa| < culfiffi| < e2B.

But 94,...,7, and « have degrees at most d, and their heights are
bounded above by a number ¢,5. Hence Theorem 3.1 gives |A| > B¢
for some C as above, and from this and our estimate [A| < e~¢12B ‘we
conclude that B < ¢,4, whence H, < ¢y;. It follows from (1) and (2) that

18:] < et < ey,
and now the equations

X = o B — 2 By Y=:61—ﬂz

oo—0ty Oy — Oy

and their conjugates clearly imply the validity of Theorem 4.1,

3. The hyperelliptic equation

Asin § 2, we signify by K an algebraic number field with degree d. We
suppose that a,,...,a, are n > 3 algebraic integers in K with, say,
oy, oy, 0ty distinet, and we prove:
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Theorem 4.2. The equation
Y= (X—c)... (X —at) (3)

has only a finite number of solutions in algebraic integers X, Y in K and
these can be effectively determined.

We shall establish Theorem 4.2 from Theorem 4.1 by a method of
Siegel,’ and again it will be clear that the arguments enable one to
furnish explicit bounds for | X|| and || Y||. The conclusion of Theorem
4.2 plainly remains valid if a non-zero factor in K is introduced on the
right of (3), and thus the theorem covers, in particular, the elliptic
equation y* = ax®+bx? 4 cx 4 d,
where all quantities signify rational integers. In this case, however,
the result can be derived from Theorem 4.1 by a readier method, due
to Mordell, involving the theory of the reduction of binary quartic
forms.}

Suppose now that X, Y are non-zero algebraic integers in K
satisfying (3). We show first that there exist algebraic integers
£,7;,6 (j=1,2,3) in K with

X““j = (gj/ﬂj) §f, 4)
max ([&], [7]) < e
where ¢,, like ¢,, ¢, ..., denotes a positive number specified as in § 2,
that is, depending only on d and the maximum of the heights of
Ay, -..» &, and some algebraic integer generating K. For simplicity we
write & = a,, and we observe that, by virtue of the ideal equation

[Y2] = [X_al] e [X——CX,J,

we have [X—a] = ab?

for some ideals a,b in K, where q divides
IT [e—ay].
i=j

Further, there exist ideals a’, b’ in the ideal classes inverse to those
of a, b respectively with norms at most ¢,, and clearly aa” and a’b’2
are principal ideals; the latter are therefore generated by algebraic
integers &', 9’ in K with

|NE'| < c;Na, |Nyp'| <

t J. London Math. Soc. 1 (1926), 66-8,
1 J. London Math. Soc, 43 (1968), 1-9.
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Furthermore, since Na < [] N[a—a,] < c¢s,
i+

it follows easily, as in the derivation of (1), that there exist associates
g", 7" of &', 9’ respectively satisfying
max (|, |7°]) < ea-

Now bb’ is principal and is therefore generated by some algebraic
integer ¢’ in K. Hence from the equation

(a'0"?) [X —a] = (aa’) (bB")?
we obtain X—a=¢e&"n)E%
where € denotes a unit in K. By Dirichlet’s theorem there exists a
fundamental system ¢, ..., €, of units in K satisfying
max ([, -, &) < es,
and we have €= peh...er

for some rational integers j,, ..., , and some root of unity p; it is now
clear that the numbers £, 9, { given by

E'pefi...elr, q", {eiin .. edirmin
respectively, where j; = 0 or 1 according as j, is even or odd, have the
required properties.
On eliminating X from (4) we obtain three equations of the form
038 — 038 = oy —

where o; = &;[9; (j = 1, 2, 8). Further, on writing
Bu = oty — ity

for any choice of the square roots, and defining f,, f; similarly by
cyclic permutation of the suffixes, we have

Bi+fe+fs = 0. (3)

Now $, is a non-zero element of the field generated by o3 and ofoverK;
further, on multiplying by & = #,7,7;, one obtains an algebraic integer
with field norm having absolute value at most cq. It follows easily, as
above, that 64, = f1€} for some unit ¢, in the field and some associate
A1 with || B1]| < ¢;; and, after permutation of suffixes, the same holds
for B, f5- Thus (5) gives

Bied+ ot + Byel =
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and, on multiplying by f32/e3, this becomes a Thue equation
x? —Ays =4,
where x = fh6les, Y = €fe;.

Hence, by Theorem 4.1, ||| and ||y| are at most ¢g, and it remains only
to show that | X|| and || Y| are likewise bounded.

Fixing the choice of the sign of 63, one can plainly select the sign of
o3 in B, so that |¢;| < ¢,. Then the bound |y| < ¢ established above
gives |€,| < ¢y, whence, since |8| > ¢;;, we obtain |§,| < ¢;,. But this
holds for either choice of the sign of ¢} and thus we conclude that both
|¢z| and || are at most c,5. It is now apparent from (4) that | X| < ¢y4;
on commencing with the equations conjugate to (3) we derive the same
bound for each conjugate of X, and the theorem follows.

4, Curves of genus 1

Let f(x,y) be an absolutely irreducible polynomial with integer
coefficients such that the curve f(z,y) = 0 has genus 1. We prove:

Theorem 4.3. The equation f(x,y) = 0 has only a finite number of
solutions in integers x, y and these can be effectively determined.

As mentioned in §1, the first part of the theorem was initially
established by Siegel in 1929, but his method of proof was ineffective.
The argument we shall give here, which is based on a birational
transformation that reduces the equation to the canonical form con-
sidered in Theorem 4.2, provides an effective and simpler proof of
Siegel’s theorem in the case of curves of genus 1; but it does not seem
to extend easily to curves of higher genus.

We shall denote by Q, Q(z) and K respectively the field of all
algebraic numbers, the field of rational functions in # with coefficients
in Q, and the finite algebraic extension of Q(x) formed by adjoining
a root of f(z,y) = 0. By the Riemann—Roch theorem, there exist
rational functions X,, X, on the curve with orders — 2, — 3 respectively
at some fixed infinite valuation, say @, of K, and with non-negative
orders at all other valuations of K; moreover, one can effectively deter-
mine the algebraic coefficients in their Puiseux expansions. We now
observe, following Chevalley, that the seven functions 1, X;, X,, X2,
X3, X3, X, X, have poles of order at most 6 at @ and so, by the
Riemann-Roch theorem again, they are linearly dependent over Q.
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Let p,,...,p; be the respective coefficients in the linear equation
relating them; clearly we have p; & 0, for the six functions excluding
X% have distinct orders at Q. On writing

X=X, Y=2,X,+p,X;+p,,
we obtain Y2 =aX34+0X24+cX +d,

where a, b, c, d are polynomials in p,, ..., p, with integer coefficients.
The cubic on the right has distinct zeros, for if the equation reduced to

Y /(X —a)}* = a(X - B),

then Y /(X — o) could possess a pole only at @; but, since X;, X, have
orders — 2, — 3 respectively at @ and p; =+ 0, the function has in fact
a pole of order 1 at @, contrary to the Riemann—Roch theorem.

We observe now that, since X,, X, are rational functions of z, y with
coefficients in a fixed field, the functions X, ¥ become algebraic
numbers in a fixed field when x, y are rational integers. Moreover, there
exists a non-zero rational integer ¢, independent of « and y, such that
¢X and ¢Y are algebraic integers; for the function X = X, has a pole
only at the infinite valuation @ and thus the equation satisfied by X
over Q(x) has the form

Xmy B(x) Xm 14 ...+ P, (x) =0,

where m is the degree of fin y and P,, ..., P, are polynomials in x with
algebraic coefficients and degree at most 2. We conclude from Theorem
4.2that X, Y can take only finitely many values when «, y are rational
integers. On noting again that X has a pole at @, it follows at once that
there are only finitely many 2, and, in view of the initial equation
flx,y) = 0, so also finitely many y. Further, it is readily confirmed
that all the arguments employed above are, in principle, effective,
and this proves Theorem 4.3.

The method of proof can easily be extended to treat curves of genus
0 when there exist at least three infinite valuations, and this together
with the above result enables one to resolve effectively the general
cubic equation f(x,y) = 0; the latter can, however, be reduced more
directly to the form considered in Theorem 4.2.

5. Quantitative bounds

As remarked earlier, the arguments employed here enable one to
furnish explicit upper bounds for the size of all the solutions of the
above equations. To calculate these bounds one needs first a quantita-
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tive version of Theorem 3.1, and, in this connexion, the most useful
result' so far established reads:

If oy, ...,a, are n > 2 non-zero algebraic numbers with degrees and
heights at most d (= 4) and A (= 4) respectively, and if rational integers
by, ..., b, exist with absolute values at most B such that

0 < |b,loga;+...+b,loga,| < B,
where 0 < & < 1, and the logarithms have their principal values, then
B < (47 9-1d2nlog A )@n+17,
By applying this together with certain estimates for units in algebraic

number fields, it has been shown that all solutions X, Y of the Thue-
equation referred to in Theorem 4.1 satisfy

max (| X|, | Y|)) < exp {(dH)**?"},

where H denotes the maximum of the heights of &y, ..., a,,, # and some
algebraic integer generating K. This leads to the bound

exp exp exp (404 Ha')
for the sizes of all solutions X, Y of the hyperelliptic equation
discussed in Theorem 4.2. Further, employing the latter estimate and

an effective construction for rational functions,? it has been proved
that all integer points #, y¥ on the curve f(z,y) = 0 of Theorem 4.3

satisfy max (||, |y|) < expexpexp{(2H )10”10},

where H denotes the maximum of the absolute values of the coefficients
of f and » denotes its degree."

In special cases one has stronger bounds. For instance, for the
elliptic equation mentioned after the enunciation of Theorem 4.2, the

estimate max (|2, |y|) < exp {(108H)1*%}

has been established, where a, b, ¢, d are assumed to have absolute
values at most H; and for the Mordell equation y? = x3+ £k, it has been
shown, by way of an expression for C in terms of Q similar to that
recorded after Theorem 3.1, that the bound exp (c|k[***) is valid for
any ¢ > 0, where ¢ depends only on €. Furthermore, techniques have
been devised which, for a wide range of numerical examples, render the
problem of determining the complete list of solutions in question
accessible to machine computation; thus, for example, it has been
proved that the only integer solutions of the pair of equations

+ Mathematika, 15 (1968), 204-16.

t Phil. Trans. Roy. Soc. London, A 263 (1968), 173-91; P.C.P.S. 65 (1969), 439-44,
§ P.C.P.S. 68 (1970), 105-23 (J. Coates). | P.C.P.S. 67 (1970), 595-602.

| Acta Arith, 24 (1973), 251 9 (H. Stark).
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322 —2 = y? and 8a2— 7 = 22 are given by # = 1 and z = 11, and that
the equation y2 = 23— 28 has only the solutions given by « = 4, 8, 37
(the corresponding values of y being +6, + 22, + 225 respectively).t

Much interest attaches to the size of the solutions of the original
Thue equation F(z,y) = m (see §1) relative to m. As a consequence of
the third inequality for | A| recorded after the enunciation of Theorem
3.1, the arguments leading to Theorem 4.1 show that, if m > 2, then
|| and |y| cannot exceed mC for some computable C depending only
on F.* This yields at once an improvement on Liouville’s theorem ;
indeed, with the notation of Theorem 1.1, we have

le—p/g| > c/g*

for all rationals p/g (¢ > 0), wherec, k are positive numbers, effectively
computable in terms of «, with & < n. The result, in slightly weaker
form, was first established$ in 1967, particular cases, however, having
been obtained a few years earlier by means of special properties of
Gauss’ hypergeometric function.! For instance it had been provedf
that when « is the cube-root of 2 and 17 then the above inequality
holds with ¢ = 107, k = 2:955 and ¢ = 107, « = 2-4 respectively,
values in fact that are almost certainly sharper than those given by
the more general techniques. But, leaving aside the effective nature
of ¢, much more about rational approximations to algebraic numbers
is known from the field of research begun by Thue, and this will be the
theme of Chapter 7.

Various other equations can be treated by the methods described
here. They can be used, for instance, to give bounds for all solutions
in integers z, y of the equation y™ = f(x), where m > 2 and f denotes
any polynomial withinteger coefficients possessing atleast two distinet
zeros; in particular, they enable one to solve effectively the Catalan
equation ™ —y" =1 for any given m, n.'t Moreover, they can be
generalized by means of analysis in the p-adic domain to furnish all
rational solutions of the equations F(z,y) = m and 32 = a3+ % whose
denominators are comprised solely of powers of fixed sets of primes;
thus, more especially, they yield an effective determination of all
elliptic curves with a given conductor.

1 Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-37; J. Number Th. 4 (1972), 107-17.

t I.A.N. 35 (1971), 973-90.

§ Phil. Trans. Roy. Soc. London, A 263 (1968), 173-91.

il Proc. London Math. Soc. 4 (1964), 385-98.

% Quart. J. Math. Oxford Ser. (2) 15 (1964), 375-83.

11 P.C.P.S. 65(1969),439-44.In fact R. Tijdeman hasrecently shown that they enable
one to give an effective bound for all solutions z, y, m, n of the Catalan equation.

1t Acta Arith. 15 (1969), 279-305; 16 (1970), 399-412, 425-35 (J. Coates).
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CLASS NUMBERS OF IMAGINARY
QUADRATIC FIELDS

1. Introduction

The foundations of the theory of binary quadratic forms, the fore-
runner of our modern theory of quadratic fields, were laid by Gauss in
his famous Disquisitiones Arithmeticae. Gauss showed, amongst other
things, how one could divide the set of all binary quadratic forms into
classes such that two forms belong to the same class if and only if there
exists an integral unimodular substitution relating them, and he
showed also how one could combine the classes into genera so that two
forms arein the same genusif and only if they are rationally equivalent.
He also raised a number of notorious problems; in particular, in Article
303, he conjectured that there are only finitely many negative discrimi-
nants associated with any given class number, and moreover that the
tables of discriminants which he had drawn up in the cases of relatively
small class numbers were in fact complete. The first part of the con-
jecture was proved, after earlier work of Hecke, Mordell and Deuring,
by Heilbronn' in 1934, and the techniques were later much developed
by Siegel and Brauer to give a general asymptotic class number
formula; but the arguments are non-effective and cannot lead to a
verification of the class number tables as sought by Gauss. In 1966,
two distinct algorithms were discovered for determining all the
imaginary quadratic fields with class number 1, which amounts to a
confirmation of the simplest case of the second part of the conjecture.

Theorem 5.1. The only imaginary quadratic fields Q(./(— d)) with
class number 1, where d is a square-free positive integer, are given by
d=1,23,1711,19,43, 67, 163.

One of the original methods of proof, and that which we shall adopt
here, is based on the work of Chapters 2 and 3 together with an idea
of Gelfond and Linnik;* the other is due to Stark® and is motivated by
an earlier paper of Heegner! which related the problem to the study of

t Quart. J. Math. Ozford Ser. 5 (1934), 150-60.

t D.A.N. 61 (1948), 773-6.
§ Michigan Math. J. 14 (1987), 1-27. | M.Z. 56 (1952), 227-53.

[47]
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elliptic modular functions and the solution of certain Diophantine
equations. The former method has recently been extended to resolve
the analogous problem for class number 2, and we shall describe the
solution in §5. Neither method, however, would seem to generalize
readily to higher elass numbers.

Nevertheless, transcendental number theory has led to new results
in several associated subjects. For instance, it has been used by
Anferteva and Chudakov! to make effective certain theorems of
Linnik on the average of the minimum of the norm function over
ideals in a given class, and it has been employed by Schinzel and the
author in studies relating to the ‘numeri idonei’ of Euler.* Further-
more, it has been applied to resolve in the negative a well-known
problem of Chowla as to whether there exists a rational-valued
function f(n), periodic with prime period p, such that Zf(n)/n = 0.3
In fact it has provided a description of all such functions f that take
algebraic values and are periodic with any modulus g; thus, in parti-
cular, it has revealed that the numbers L(1, y) taken over all non-
principal characters y (modg) are linearly independent over the
rationals, provided only that (¢, #(¢)) = 1, and this plainly generalizes
Dirichlet’s famous result on the non-vanishing of L(1, y). It would be
of interest to know whether the theorem remains valid when

(2, 9(9)) > 1.

Some further results will be mentioned in §5.

2. L-functions

We record here some preliminary observations on products of
Dirichlet’s L-functions.

TLet —d < 0 and k > 0 denote the discriminants of the quadratic
fields Q(+/(—d)) and Q(4/k) respectively, and suppose that (k,d) = 1.

Let L —d
x(n) = (ﬁ), X'(n) = (T)
be the usual Kronecker symbols. Then, for any s > 1, we have
L(s, 0 L, xx') = 1 2 (NS (1)

where , y run through all integers, not both 0, and
=1 y) = ax®+bay +cy®

t Mat. Sb. 82 (1970), 55-68; = 11 (1970), 47-58.
t Acta Arith. 18 (1971), 137-44. § J. Number Th. 5 (1973), 224-36.
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runs through a complete set of inequivalent quadratic forms with
discriminant —d. To verify this assertion, we observe that the left-
hand side of (1) is given by

EEG) e - £0)3(5),

and the last sum is one half the number of representations of 7 by the
formsf.!
Now the right-hand side of (1) can be written

T X x@?) (@)t +X X X x(H)f
f z=1 f yv=1 z=—w
The first term here is

2o I (1-p~>) X x(a)a*,
olk !
and the second term can be expanded as a Fourier series

Z g A,(S) eﬂirb/(ka)’

f r=—w

where A(s) =k * ;_“ :{_“ x(f) g=* e=2mirolk gy,
0 y=lae=—o
and g9 = g(v) = a(x +vy)*+ (d/4a) ¥,
so that f = g(b/2a). On substituting « for v by the equation
z+vy = uy(\Jd[2a),
writing & = m + kyn, where 0 < m < ky, and interchanging the order

of integration and summation, as one may by dominated convergence,
one obtains

A0) = ke (2P () 3 ot)y

7 © e-—ﬂiur\/d/(ka)

where (s) = f_w W du
Fy—-1 ]

and o(y) = X x(f(m,y))etrirmitv);
m=0

the integral in fact arises from summation over » of the partial
integrals from ¢, to ¢, ., where

c, = 2a(m+kyn)/(y./d).

t See Landau’s Vorlesungen tiber Zahlentheorie (Leipzig, 1927), Satz 204,
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On putting m = j+ kI, where 1 < j < k, one sees that
K
o(y) = yzﬁ X(f(G, y)) emirittew)

if y divides r, and o(y) = 0 otherwise, and this ecompletes the pre-
liminary observations.

3. Limit formula

All solutions to date of the elass number 1 problem depend on an
analogue for products of L-functions of the classical Kronecker limit
formula. On writing, with the notation of the previous section,

Ay=limA4y(s), A,=A4,(1) (r=+0),
s—1

and taking limits as s > 1, we obtain

2 )
LA, x) L, xy) = T 10 (1—12) p) Ma) T 3 A,eridvika, (2)

6 ik p/yr @ fr——cw

Our purpose here is to prove that

2n

IArl < ;7& Irl e—lrlVdjka)

forr + 0, and A 2 (@) 1o

’ [ N de X gp

if k& is the power of a prime p, 4, = 0 otherwise.
To begin with, we observe that, for r + 0,

4, = Gkyd) T (1) Z ﬁl YL x(f (4, y)) exririli),
Y j=

where y runs through all positive divisors of . It is easily confirmed

that L(1) = me-minVaida),

and clearly the sum over y in 4, has absolute value at most k|r|. The
first agsertion follows at once. To establish the second assertion, we
note that

Age) = It ar - ap 1) 3 % 3 0(FG ),

and Iy(s) = \/nT(s—})/T'(s).
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Further, by well-known estimates for the Gaussian sums, we obtain,
for any positive integer y and any odd &,

k k
X x(fU,y) = x(@) X x(5?) eiivik;
i=1 j=1

we shall be concerned in the sequel only with odd values of k, but the
equation in fact holds also for even k, as has been shown by Stark.t
The sum over j on the right can be expressed alternatively as a sum
of terms du(k/d) over all common divisors d of kand y,* and hence we
see that the sum over y in the above expression for 4,(s) is given by

x(a) {(2s— 1) k*-2 T (1 —p*2).
ok

The required result is now readily verified.

4. Class number 1
Suppose that Q(,/(—d)) has class number 1. Then, by the theory of
genera, d is a prime congruent to 3 (mod 4), and there is just one form
f which can be taken as

2 +ay+3(1+d)y?
We select £ = 21 and we note that Q(,/k) has class number 1 and
fundamental unit ¢ = §(5+,/21). Further we note that (k,d) = 1 for
d > k, and that 4, = 0. Hence the double sum on the right of (2) has
absolute value at most

(477/«/4)2‘.1777',

where 3 = ¢="Valk_ The sum over r is precisely /(1 —%)%, and 5 < } if
Jd > k; thus the above expression is at most 1677/,/d.
Now classical results of Dirichlet give
L(1,x) = 2loge/Jk, L(1, xx") = hm/|/(kd),
where A denotes the class number of @(,/(— kd)), and, on substituting
into (2), we readily derive the inequality
|hloge—32n,Jd| < e—7Van0o,

assuming that d > 10%, say. But 7 = —2ilog¢ and so we have on
the left a linear form A in two logarithms of the kind considered
t Acta Arith. 14 (1968), 35-50.

1 See Hardy and Wright'a, An introduction to the theory of numbers (Oxford, 1960),
Theorem 271.
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in Theorem 3.1; since clearly % < 4,/d and log ¢, log ¢ are linearly
independent, we conclude that the inequality is untenable if d is larger
than some effectively computable number. To calculate the latter, it
is convenient to take a second inequality arising from (2) with k¥ = 33,

namel
Y |2’ log e’ — 83mJd| < e~V a0,

where &', ¢’ are defined like &, ¢ above with the new value of k. By
subtraction we obtain

|bloge+b'loge’| < e,
where 0-1=14x10%, B = 140Jd, b=35h, b’ =—22k,

and clearly b, b" have absolute values at most B. Since, furthermore,
¢, ¢’ are multiplicatively independent, one can apply the result quoted
in § 5 of Chapter 4, withn = 2,d = 4, 4 = 46, to obtain B < 10%9°, This
gives d < 10°%, and a determination of the solutions of the above
inequality below this figure is quite feasible. But the computation is in
fact not needed here, for it was proved by Heilbronn and Linfoot! in
1984 that, apart from the nine diseriminants listed in Theorem 5.1,
there could be at most one more, and calculations? had shown that
the tenth d, if it existed, would exceed exp (107).

The above argument is similar to that described by Gelfond and
Linnik in 1949, but they had access to the formulae of §3 only for
prime values of k, and in this case 4, is not 0; thus they were led to an
inequality involving three logarithms of algebraic numbers which
could not be dealt with effectively at that time. It is a remarkable
coincidence that both the formulae for composite & and the desired
effective inequality involving three logarithms became available
simultaneously in 1966.

5. Class number 2

We now indicate briefly how the above arguments can be extended to
treat the analogous problem for class number 2.9

If Q(,/(—d)) has class number 2 and d > 15 then d is congruent to
8 or 4(mod8); for if d = 7 (mod8) there are three inequivalent
quadratic forms with discriminant —d, namely

?+ay+}(1+d)y® 20 +ay+3(1+d)yR

t+ Quart. J. Math. Oxzford Ser. 5 (1934), 293-301.

{ Trans. Amer. Math. Soc. 122 (1966), 112-19 (H. M. Stark).

§ For the original solutions see Ann. Math, 94 (1971), 139-52 (A, Baker); 153-73
(H. M. Stark).
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When d = 4 (mod 8), two inequivalent quadratic forms with dis-
criminant —d are given by 22+ }dy?, and either

222+ 2xy+}(4+d)y> or 2x+1dy?

according as }d = 1 or 2 (mod 4), and the method of proof of Theorem
5.1 is applicable with only simple modifications.? There remains the
cased = 3 (mod 8). The theory of genera shows thatthen d = pg, where
P, g are primes congruent to 1 and 3 (mod 4) respectively. On signi-
fying by x'(n) one of the generic characters associated with forms of
discriminant —d and writing

toa® = (22), 0= (), aw = (5), 2 = (£),

where k = 1 (mod 4) and (%, pg) = 1, we deduce from classical results
of Dirichlet and Kronecker that

L(1, x) L(1, xXpq) + A1, xXp) L(1, XX,)
=% ; 2 () + xx'(F) (P, )

@,y
where F runs through a pair f, f’ of inequivalent quadratic forms with
discriminant —d and =, y take all integer values, not both 0. We can
agsume that f is the principal form, whenee y'(f) = 1, ¥'(f") = — 1 for
all 2, y. On appealing to Dirichlet’s formulae we thus obtain

(k/2m)/(pg) X x(f)If = h(k) B — kpg) log € + h(kp) h( — kq) log 7,

@,y

where k() denotes the class number of @(,/l) and ¢, 7 denote the funda-
mental units in Q(,/k), @(/(kp)) respectively. Finally taking k = 21 and
employing arguments similar to those applied in the proof of Theorem
5.1, we reach the inequality

|A(—21d)loge + h(21p) k(- 21g) log 7 — $3m Jd| < e-110Va,
This has the form
|Bloga+p'loga’ +B"loga”| < B,

where the f’s denote algebraic numbers with degrees at most 2, and
a=79,0"=¢a"=—1, B=,d, 8§ ={. Clearly the heights of the £’s
are bounded above by an absolute power of B and the height 4 of « is
bounded above by p°V? for some absolute constant ¢. If ¢ < d¥ then

we can take f as gzt + gy + 3o+ ) 97,

t See Bull. Lond Math, Soc. 1 (1969), 98-102,
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and again the method of proof of Theorem 5.1 is applicable. Thus we
can assume that ¢ > d¢ whence p < di. We now appeal to the first
inequality for |A| recorded after the enunciation of Theorem 3.1 and,
on noting that the maximum A4’ of the heights of a’, a” is absolutely
bounded, we conelude that B < C(log 4)1+¢ for any ¢ > 0, where
C = C({) is effectively computable. Hence we have

Jd < O(cq/plogp)t+t

and, recalling that p < d, this plainly gives an effective upper estimate
for d when ¢ < §. In practice’ the bound for d turns out to be a little
over 10%°, and computational work on the zeros of the {-function has
yielded all d in question below this figure; thus it has been checked
that the largest d for which @(,/(—d)) has class number 2 is 427.

Progress in this and other fields of application of the theory of linear
forms in the logarithms of algebraie numbers is continuing, and, before
leaving the topie, we record five further results that have been obtained
with its aid. First it has been utilized by E. E. Whitacker* to determine
certain imaginary quadratic fields with the Klein four-group as class
group. Secondly it has been employed by K.Ramachandra and
T.N.Shorey! in researches on a problem of Erdds in prime-number
theory; in particular, they have shown thatif £ is a natural number and
if n,, ng, ... 18 the sequence, in ascending order, of all natural numbers
which have at least one prime factor exceeding %, then the maximum
fB)ofnyy—n; (8 = 1,2,...)satisfiesf (k) log k/k — Oask — co. Thirdly,
in a similar context, R. Tijdeman’ hasused an inequality for |A| of the
kind appearing after Theorem 3.1 to resolve in the affirmative a
question of Wintner as to whether there exists a sequence of primes
such that the sequence 7., 7, ... of all natural numbers formed from
their power products satisfies n,,,—n;—>o0 as ¢—>co. Fourthly,
A.Schinzel" has applied the second inequality for |A| recorded after
Theorem 3.1 to settle an old problem concerning primitive prime
factors of a” — #». And, finally, we mention that in 1967, A. Brumer??
obtained a natural p-adic analogue of an early version of Theorem 3.1
which, in combination with work of Ax,# resolved a well-known
problem of Leopoldt on the non-vanishing of the p-adic regulator of an
Abelian number field.

1 Ann. Math. 96 (1972), 174-209 (H. M. Stark).

} Ph.D. Thesis, University of Maryland, 1872.

§ Acta Arith. 24 (1973), 99-111; 25 (1074), 365-73.

|| Compositio Math. 26 (1973), 319-80. 9 J.M. 269 (1974), 27-33.

tt Mathematika, 14 (1967), 121-4, 1t Nlinoia J. Math. 9 (1085), 584 9.



6
ELLIPTIC FUNCTIONS

1. Introduction

Siegelt proved in 1932 that if fp(2) is a Weierstrass gp-function such
that the invariants g,, g; in the equation

(0'(2)? = 4p(2))* - g2 00(2) — 95

are algebraic numbers, then one at least of any fundamental pair
w, o' of periods of (z) is transcendental; thus both w and «’ are
transcendental if g(z) admits complex multiplication. Siegel’s work
was much improved by Schneider? in 1937; Schneider showed that if
gss gs are algebraic then any period of @(z) is transcendental, and
moreover the quotient w/w’ is transcendental except in the case of
complex multiplication. From the latter result it follows at once that
the elliptic modular function j(2) is transcendental for any algebraic 2
other than an imaginary quadratic irrational. Schneider’s work led, in
faet, to a wide variety of theorems on the transcendence of values of
the Weierstrass funetions, and, in 1941, he further obtained far-
reaching generalizations concerning Abelian functions and integrals.

Most of Schneider’s results in this context can be derived as parti-
cular cases of a general theorem on meromorphic funetions which he
proved in 1949." The theorem has recently been re-formulated by
Lang.7

Theorem 6.1. Let K be an algebraic number field and let fi(2), ..., f,,(2)
be meromorphic functions of finite order. Suppose thatthering K[ fy, ..., [,]
18 mapped into itself by differentiation and has transcendence degree at
least 2 over K. Then there are only finitely many numbers z at which
Sis oo os [, simultaneously assume values in K.

A meromorphic funetion f(2) is said to have finite order if there
exists p > 0 and a representation of f as a quotient g/h of entire fune-
tions such that, for any R > 2, and for all z with || < R, one has

max (|9(z)|, |k(2)]) < exp (R?). (1)
t+ J.M. 167 (1932), 62-9. t M.A. 113 (1937), 1-13.
§ J.M. 183 (1941), 110-28, i M.A. 121 (1949), 131-40.

9 See Bibliography (first work).
L [56]) BTN
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The ring K[f;,...,f,] consists of all polynomials in f,,...,f, with
coefficients in K, and the transcendence degree is the maximum
number of elements in an algebraically independent subset. Theorem
6.1 has been generalized to relate to meromorphic funetions of several
variables but the assertion has been obtained only for point sets which
can be represented essentially as a cartesian product and this limits
considerably the range of application.” Functions of several variables
have been utilized, however, as in Chapters 2 and 3, in other work on
elliptic funetions, and this will be the theme of § 5.

2. Corollaries

We now record some corollaries to Theorem 6.1; others can be found
in the works cited in the Bibliography.

Theorem 6.2. If g,, g, are algebraic, then for any algebraic a =+ 0,
P(c) is transcendental.

For the proof one has merely to observe that if p(a) were algebraic
then, for infinitely many integral values of z, the funetions

Nil2) = plaz), foz) = @'(x2), fole) =2
would simultaneously assume values in the algebraic number field
generated by ¢,, g5, o, @() and () over the rationals, contrary to
Theorem 6.1.

Theorem 6.3. For any algebraic o with positive imaginary part,
other than a guadratic irrational, j(o.) 18 transcendental.

For suppose that j(«) is algebraic. Then there is a g-function with
algebraic invariants g,, g; and fundamental periods w,, w, such that
o = wy/w,; indeed if P(z) is the p-function with periods 1, & and if
Gas T3 are the 1nvar1ants of @ then the required g-funetion has periods
g8, agh if 7, + 0 and 75, ocg% 1f Js % 0. Now the functions f; = p(z),
fo = ploz), f5 = 9'(2), [y = $'(az) simultaneously assume values in an
algebraic number ﬁeld, say K, When z=(r+3}) w; (r=1,2,...)and so,
by Theorem 6.1, K[ f,, f,,fs, fs] has transcendence degree at most 1. This
implies that f,,f, are algebraically dependent, whence lw, is a period
of p(az) for some positive integer I. Thus law, = mw, +nw, for some
integers m, n and so « is a quadratic irrational. It will be recalled that
1 For some work aimed towards overcoming this difficulty see papers by Bombieri

(Invent. Math. 10 (1970), 267-87) and Bombieri and Lang (ibid. 11 (1970), 1-14).

It is shown that it suffices if the points in question do not lie on an algebraic
hypersurface.
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if 1, & is a basis for an imaginary quadratic field K, then j(«) is in fact
a real algebraic integer with degree given by the class number of
K, and hence the hypothesis of Theorem 6.3 is certainly necessary.

Theorem 6.4. Any vector period of an Abelian function arising from
an algebraic curve® by the snversion of Abelian integrals is transcendental.

The result follows from Theorem 6.1 with f,(2), ..., f,_1(2) given by
the Abelian function, say 4(z,...,2,), and its p partial derivatives
with respect to zj,...,z,, evaluated at z; = 0,2,...,2, = 0,2, where
(@y, ..., w,) denotes the given period, together with f,(z) = z. It should
perhaps be emphasized that the theorem establishes only the tran-
scendence of one at least of the elements of the period vector, and it
remains an open problem to prove the transcendence of each such
element. As a particular application of Theorem 6.4 one sees that the

[S-function ' 1 - I'(a) T(b)
ﬂ(a,b) = J‘o x® 1(1—.7:)" ldx = m
is transcendental for all rational, non-integral a, b. For ifa + b is not an
integer then the elements of any vector period of the Abelian function
arising from the integration of 9-1(1 — x)®-* are given by products of
B(a,b) with numbers in the field generated by e?7ie and e2"®® over the
rationals; and the case when a +b is an integer reduces to the tran-
scendence of 7. This result on f(a,b) represents all that is known
concerning the transcendence of the values of the I'-function.
Finally, let @ be a primitive period of a g-function with algebraic
invariants g,, g; and let 7 = 2{(3w) be the associated quasi-period of the
Weierstrass {-function satisfying {'(z) = — (z). We have

Theorem 6.5. Any linear combination of w, n with algebraic
coefficients, not both 0, is transcendental.

For the proof we observe simply that if aw+ fy were algebraic,
where o, § are algebraic numbers, not both 0, then the functions

fHi=0k), fi=g@), fi=ax+pir
would simultaneously assume values in an algebraic number field when
z=(r+dw(r=1,2,...), contrary to Theorem 6.1. On recalling that
w and 7 can be represented as elliptic integrals of the first and second
kinds respectively, one deduces easily from Theorem 6.5 that the
circumference of any ellipse with algebraic axes-lengths is transcen-
dental. Further work in this context will be discussed in § 5.

t The curve is dofinod over the algobraio numbors.



58 ELLIPTIC FUNCTIONS

3. Linear equations
We establish here a result on linear equations with algebraic coefficients
which generalizes Lemma 1 of Chapter 2. K will signify an algebraic
number field and ¢,, ¢,, ¢; will denote positive numbers that depend on
K only. Further, as in Chapter 4, ||0|| will signify the size of 8, that is,
the maximum of the absolute values of the conjugates of 6.

Lemma 1. Let M, N be integers with N > M > 0 and let
u; (1<i<M,1<j<N)

be algebraic integers in K with sizes at most U (> 1). Then there exist
algebraic integers x,, ...,y in K, not all 0, satisfying

N
i=1

and | < ey, NUYMN-30 (1 < j < D).

For the proof we denote by w,, ..., », an integral basis for K and we
observe that n
gy 0 = hi_:luhﬁk Wy,

for some rational integers u,,;,. The equations serve to express the
latter as linear combinations of the wu; and their conjugates, with
coefficients that depend only on K, and hence we have |u,;;;| < ¢, U.
It follows from Lemma 1 of Chapter 2 that there exist rational
integers z;;,, not all 0, with absolute values at most (cg NU)MWN-2D,
satisfying

Uiy, =0 (1<h<n,1<1< M),

1

M=

-

TMs

.

and it is now clear that the numbers
n
x;= % ZTpw, (1<j<N)
k=1

have the required properties.

4. The auxiliary function

We assume now that the hypotheses of Theorem 6.1 are satisfied and
we write f; = g,/h,, where g,, k, are entire functions for which (1) holds.
We suppose further that there exists a sequence of distinet complex
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numbers y,, y,, ... such that f(y;) is an element of K for all 4, j. By
¢4, Cs, ... we shall denote positive numbers which depend only on the
quantities so far defined. We signify by m an integer that exceeds a
sufficiently large ¢, and by % an integer that is sufficiently large com-
pared with m. We write, for brevity, L = [¥1], and we use f@ to denote
the jth derivative of f.

Lemma 2, There are algebraic integers p(A,, Ay) in K, not all 0, with
sizes at most k°s*, such that the function

O(z) = Z 2 P (A1 Ag) (f1(2))1 (fal2)e

=0 2,=0

satisfies O(y)=0 (0<j<k 1< <m).

Proof. The number ®9)(y,) is plainly expressible as a linear form in
the p(A;, A,) with coefficients given by polynomialsin f,(y), ..., fu(#)-
The polynomials arise from the derivatives of f,,...,f, which, by
hypothesis, are elements of K{f;,...,f,]; thus the coefficients of
P(Ay, Ay) belong to K. The latter become algebraic integers when
multiplied by some positive integer, and we shall suppose that the
sizes of these algebraic integers are at most U. The number of equations
to be satisfied is M = m(k+ 1) and the number of unknowns p(2y, A,) is

= (L+1)% > kt. But clearly N > 2/ for % sufficiently large and so,
by Lemma 1, the equations can be solved non-trivially, and indeed
with the sizes of the p(A,, A,) at most c2NU. Hence it remains only to
prove that one can take U < k¥,

Now it is readily verified by induction on j that, for any polynomial

a 4
Qs ..., x,) = 20...lg}oq(ll,...,ln)x’ll...x’,?
with coefficients in K, the function R(z) = Q(f;, ...,[,) satisfies

RU)z) = 2 Zr(ll, ol fit - i

L= I=0
where ther(ly, ..., 1,) are again elements of K andd’ < d +54, 8 denoting
the maximum of the degrees of the first derivatives of fi,...,f,,
expressed as polynomials in the latter. Further, it is easily confirmed
that if the ¢(l,, ...,1,) become algebraic integers with sizes at most s
after multiplying @ by some positive integer, then R) can be multi-
plied by a positive integer so that the r(l,,...,1,) become algebraic
integers with sizes at most § = (c,d)7j!s. The lemma follows on
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applying thisresult with @ = x*z}*andj < k,whences = 1,d < L < k
and 8 < k%%, and noting that, if £ is sufficiently large, then the
estimate k%% obtains for each power product f#...f evaluated at
z =1y, wherel, <d' <cpkandlgm

Lemma 3. For any R > 2 and for all z with |z| < R, the function
¢ = (hy... h,)- @ satisfies

|p(z)| < exp{eyy(klogk+ LRe)}.

Further, for any j, lwith § = k, 1 < m such that ®9(y)) = 0 for all ¢ < j,
the number ¢'9(y,) either vanishes or has absolute value at least j—c17.

Proof. The first part is an immediate deduction from (1) together
with the estimates occurring in Lemma 2. The second part is obtained
by an argument similar to that employed in the proof of Lemma 3 of
Chapter 2; one observes that ®(y,) is an element of K and that, for
j = k, it becomes an algebraic integer with size at most js7 when
multiplied by some positive integer likewise bounded. Further, by
hypothesis, ®9(y;) differs from ¢)(y,) only by a factor (k... k)=
evaluated at z = y;, and the required result now follows from the fact
that the norm of a non-zero algebraic integer is at least 1.

5. Proof of main theorem

It suffices to prove that ® vanishes identically; for this implies that f;

and f, are algebraically dependent and so, since the suffixes can be

chosen arbitrarily, K[f,, ..., f,] has transcendence degree at most 1,

contrary to hypothesis. The contradiction shows that m is bounded

by some ¢, as above, whence the sequence ¥, ¥, ... must terminate.
The proof will proceed by induction on j; we assume that

Dy) =0 (0<i<j,1<lgm),
and we prove that the same then holds for 2 = j. In view of Lemma 2
we can suppose thatj > k. Let now C be the circle in the complex plane

described in the positive sense with centre the origin and radius
R = 5147, Further, let

F(z) = (2—?/1) (z_ym)’
and let [ be any integer with 1 < I < m. By Cauchy’s residue theorem

Py g $(z) dz
(I’"(yt))j om cR—=y) (F(z))?
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Clearly for z on C we have
|F@)] > GRY™ > jmieo),

and also |z—y| > 1R. Further, we have LR < kjt < j and so, by
Lemma 3, |¢(z)| < jow!. Furthermore, it is obvious that |F'(y,)| < j
for k sufficiently large. Hence we obtain

|¢( i)(yl)l < jcls:i—:im/(ep)'

But if m > 8p(cyy+ ¢4;5) then, in view of Lemma 3, the latter estimate
implies that ¢(9(y;) = 0. Assuming, as plainly one may, that &,... 4,
does not vanish at z =y, it follows that ®¥(y)= 0. Thus, by
induction, we conclude that ® and all its derivatives vanish at
Y1 +++s Yy Whence @ vanishes identically, as required.

6. Periods and quasi-periods

The work of Siegel, cited at the beginning, was based on the interpola-
tion techniques discovered a few years previously by Gelfond,* and the
work of Schneider arose out of further developments of these tech-
niques leading, as mentioned in Chapter 2, to a solution of the seventh
problem of Hilbert. The recent advances concerning linear forms in the
logarithms of algebraic numbers discussed in earlier chapters have
similarly given rise to new results on the transcendental theory of
elliptic functions, as we shall now describe.

First, generalizing Theorem 6.5, it has been shown that if w,, w, are
primitive periods of some, possibly distinet gp-funetions both with
algebraic invariants, and if #,,9, are the agsociated quasi-periods of
the {-functions, we havet

Theorem 6.6. Any non-vanishing linear combination of wy, we, 9,, 7,
with algebraic coefficients is transcendental.

This establishes, in particular, the transcendence of the sum of the
circumferences of two ellipses with algebraic axes-lengths. For the
proof of Theorem 6.6 we signify by @,, @, the given p-functions, by
&, &, the associated {-functions and we assume, as we may without
loss of generality, that the corresponding invariants 1g,, 1¢; are alge-
braic integers. We assume also that there exists a linear relation

0y 0y + gy + B9, + Ba7s = &,

t Seo o.g. T6hoku Math. J. 30 (1929), 280-5.
t Gottingen Nachrichten (1069), No. 16, 145 -57.
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where a, + 0, &, &, £,, 5 are algebraic numbers, and we ultimately
derive a contradiction. We signify by k an integer which exceeds a
sufficiently large number ¢ depending only on the a’s, #’s and the
invariants, periods and quasi-periods of the Weierstrass functions,
and we write, for brevity, & = [kis], L = [ki]. The argument then
rests on the construction of an auxiliary function

O(zy,2,) = 2 2 2 (Ao, Ay, Ag) (f (21, 20))0 (01 (0120))M (2 (wa20) ) e,

Ae=04,=01,=0

where the p(A,, A, A,) are integers, not all 0, with absolute values at
most k1%, and

Fz1,29) = 01 0121+ 0929+ 1 §i(0121) + B2 8o(022,).

The function is constructed to satisfy
(Dml, mg(s + _21’8 + %) =0

for all integers s with 1 < s < & and all non-negative integers m,, m,
with m, +m, < k, where the sufﬁxes denote partial derivatives as in
Chapter 2.

The essence of the proof is an extrapolation algorithm analogous to
that described in connexion with linear forms in logarithms, but the
order of @ here is greater than in the earlier work and, to compensate,
rational extrapolation points with large denominators are utilized;
an important role in the discussion is therefore played by the division
value properties of the elliptic functions. The counterpart of Lemma 4
of Chapter 2 asserts that, for any integer J between 0 and 50 inclusive,
we have (Dml,mz(s + ’I'/q, s+ T/Q) =0
for all integers ¢, r, s with g even, (r,¢) = 1,

g2, 1<s<hP, 1<r<yg,

and all non-negative integers m,, m, with m, + m, < k/27. The demon-
stration proceeds by induction and involves an application of the
maximum-modulus principle as in the original lemma. It also utilizes
the observation that, apart from a factor w7 0, the number on the
left of the required equation is algebraic with degree at most.¢’q%, where
¢’ is defined like ¢ above; and precise estimates for the number and its
conjugates are furnished by division value theory. One concludes
from the lemma that

Q, ms+ts+d) =0 (1<s<L+1,0<m,my< L),
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which is clearly a system of (L+1)3 linear equations in the same
number of variables p(A,,A;,A,); on noting that, for any regular
function f, the determinant or order z with the ith derivative of (f(2))?
in the ith row and jth column has value

21, nl (f'(z))ntntD),

one easily verifies that the system of equations is untenable, and this
proves Theorem 6.6.

The special case of the theorem when g,, £, are the same @-function,
say , is of particular interest. For then w,, w, can be taken as a pair
of fundamental periods of g and we have the Legendre relation

N Wy — Ny = 2771,

In this case Coates and more recently Masser* have much extended
the arguments and have proved:

Theorem 6.7. The space spanned by 1, w,, w,, 11, 7, and 271 over the
algebraic numbers has dimension either 4 or 6 according as § does or does
not admit complex multiplication.

The theorem clearly exhibits a non-trivial example of five numbers
that are algebraically dependent but linearly independent over the
algebraic numbers. Moreover it implies that, when § admits complex
multiplication, the numbers in question satisfy an algebraic linear
relation other than that between the periods; this was discovered by
Masser. It takes the form

)y — CTYy = YWy,

where 7y is algebraic and a, ¢ are the integers occurring in the equation
a+br+cr? =20

satisfied by 1 = w,/w,. A necessary and sufficient condition for y to be
0 is that either g, or g; be 0, and thus one deduces that #,/y, is tran-
scendental if and only if neither invariant vanishes. The theorem also
shows, for instance, that 7+ w and 7+ 5 are transcendental for any
period w of f(z) and quasi-period # of {(z). The transcendence of 7/w,
incidentally, follows from Theorem 6.1 by way of the functions
P(wz/m) and e=,

The demonstration of Theorem 6.6 extends easily to establish, under
the conditions appertaining to Theorem 6.7, the transcendence of any

t Amer. J. Math. 93 (1971), 385-97; Inventiones Math. 11 (1970), 167-82.
3 Ph.D. Thesis, Cambridge, 1974.



64 ELLIPTIC FUNCTIONS

non-vanishing linear combination of w,, w,, 9, 77, and 27¢; the auxiliary
function now takes the form

L L
D(21,29,23) = A§0 Agop(/\o, cees Ag)

X (f(zla 29, 23))"0 (@1(&)1 Zl))Al (@2((02 zz))lz e2midg 2,

where L = [k¥] and f(z,, 2, 23) is the sum of f(2,, 2,), as defined above,
and an algebraic multiple of #z;. Here, however, it is necessary to
appeal to another remarkable property of the division values, namely -
that, for any positive integer », the field obtained by adjoining
plwi/n), P(wyfn), P'(wy/n) and @'(wy/n) to K = Q(g,, g5 ¢*™™) has
degree at most 2n® over K; this ensures that the estimate ¢'q* referred
to above remains unaltered in the present context. To complete the
proof of Theorem 6.7 one has to establish the linear independence
over the algebraic numbers of w,, 9, and 277 in the case when @ admits
complex multiplication, and of these, together with w,, #,, in the case
when g does not. The work runs on similar lines, using slightly modified
auxiliary functions, but the determinant arguments at the end are no
longer applicable; ad koc techniques have been introduced to overcome
this difficulty involving, in particular, new considerations on the
density of zeros of meromorphie functions. The linear independence of
wy, W, and 27 was in fact proved first by Coates utilizing a deep result
of Serre, but Masser later verified this more elementarily.

In another direction, the work has been refined to yield estimates
from below for linear forms in periods and quasi-periods. They show,
for instance, that for any gp-function with algebraic invariants, for
any € > 0, and for any positive integer »,

| @(”’)l < (Oplloglog n)7+"

where C depends only on gy, g5 and e.t In fact a similar result has been
established for @( + n) and for p(a), where a is any non-zero algebraic
number. The estimate compares well with the lower bound |p(n)| > Cn
valid for some C > 0 and infinitely many ».

Finally, as a further example of the type of theorem that has been
obtained by the above methods, we mention a recent result of Masser*
concerning algebraic points on elliptic curves; he has proved, namely,
that if ¢(2) has algebraic invariants and admits complex multiplica-
tion, then any numbers u,,...,%, for which @(%;) is algebraic are

+ Amer. J. Math. 92 (1970), 619-22 (A. Baker); P.C.P.S. 73 (1973), 339-50 (D. W.
Massor). 1 Ph.D. Thesis, Cambridge, 1974.
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either linearly dependent over Q(w,/w,) or linearly independent over
the field of all algebraic numbers. It would be of much interest to
establish a theorem of the latter kind more generally for all o-functions
with algebraic invariants, and it would likewise be of interest to
extend Theorem 6.6 to apply to any number of gp-functions; both
problems, however, seem out of reach at present.
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RATIONAL APPROXIMATIONS TO
ALGEBRAIC NUMBERS

1. Introduction

In 1909, a remarkable improvement on Liouville’s theorem was
obtained by the Norwegian mathematician Axel Thue.! He proved
that for any algebraic number o with degree » > 1 and for any
k > }n+1 there exists ¢ = ¢(a, k) > 0 such that |a—p/g| > ¢/g* for
all rationals p/g (¢ > 0). His work rested on the construction of an
auxiliary polynomialin two variables possessing zeros to a high order,
and it can be regarded as the source of many of our modern transcen-
dence techniques. The condition on x was relaxed by Siegel* in 1921
to k > s+n/(s+1) for any positive integer s, thus, in particular, to
k > 2,/n, and it was further relaxed by Dyson! and Gelfond" inde-
pendently in 1947 to « > ,/(2n). The latter expositions continued to
involve polynomials in two variables and further progress seemed to
require some extension of the arguments relating to polynomials in
many variables; in fact special results in this connexion had already
been obtained by Schneider® in 1936. A generalization of the desired
kind was discovered by Rothtt in 1955; he showed indeed that the
above proposition holds for any « > 2, a condition which, in view of
the introductory remarks of Chapter 1, is essentially best possible.
Roth’s work, however, gave rise to a number of further problems.
Siegel had initiated studies on the approximation of algebraicnumbers
by algebraic numbers in a fixed field, and also by algebraic numbers
with bounded degree, and although Roth’s arguments could be readily
generalized to furnish a best possible result in connexion with the first
topic,*t they did not seem to admit a similar extension in connexion
with the second. Even less, therefore, did they appear capable of
dealing with the wider question concerning the simultaneous approxi-
mation of algebraic numbers by rationals. The whole subject was
resolved by Schmidt¥ in 1970; building upon Roth’s foundations but

+ J.M. 135 (1809), 284-305. 1 M.Z. 10 (1921), 173-213.

§ Acta Math. 79 (1947), 225-40. || Bibliography.

9 J. M. 175 (1986), 182-92. tt Mathematika, 2 (1955), 1-20.
11 See LeVeque (Bibliography). §§ Bibliography.
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introducing several new ideas, in particular from the Geometry of
Numbers, he proved:

Theorem 7.1. For any algebraic numbers .y, ..., o, with 1,0, ..., a,
linearly independent over the rationals, and for any € > 0, there are only
Jinitely many positive integers q such that

g**llgo] .- gl < 1.

Here ||z| denotes the distance of & from the nearest integer taken
positively. The theorem implies, by a classical transference principle,!
that there are only finitely many non-zero integers ¢,, ..., g, with

gy .. gu e o + ..+, 0,) < 1.

Further, as immediate corollaries, we see that there are only finitely
many integers p,, ..., p,, g (¢ > 0) satisfying

loy—pilgl < g ~m= (1 <j <),
and also only finitely many integers p, q,, ..., g, satisfying

|Q1“1+ +Qnan_p| < g™

where ¢ = max |g;|. Furthermore we have:

Theorem 7.2. For any algebraic number o with degree exceeding n
and any € > 0, there are only finitely many algebraic numbers B with
degree at most n such that |a— | < B—"=1-¢ where B denotes the height
of B.

The theorem follows from the inequality just above with et; = a4, on
noting that, if P(x) is the minimal polynomial for £, then

|P(a)| < BC|a—p|

for some C depending only on «. The exponent of B is essentially best
possible, as has been demonstrated by Wirsing.* In fact, Wirsing
obtained Theorem 7.2 in 1965 before the work of Schmidt, but with
the less precise exponent —2n—e¢.$

One of the main applications of the methods of this chapter has
concerned Diophantine equations of norm form in several variables,
which generalize the Thue equation discusscd in Chapter 4; indeed the

t See Cassels’ Diophantine approzsmation (Bibliography).

$ J. M. 206 (1961), 67-77.
§ Proc. Symposia Pure Math. (Amer, Math. Soc.), 20 (1971), 218-47.
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work has led to a complete description of all such equations that
possess only finitely many solutions.t

Theorem 7.3. Let K be an algebraic number field and let M be a
module in K. A necessary and sufficient condition for there to exist an
integer m such that the equation Ny = m has infinitely many solutions y
wn M is that M be a full module in some subfield of K which is neither the
rational nor an imaginary quadratic field.

The necessity follows at once from the fact that the subfield, if it
exists, contains at least one fundamental unit, and the sufficiency is a
consequence of a generalized version of Theorem 7.1 relating to
products of linear forms;* it is in fact a direct corollary in the case
when the dimension of M is small compared with the degree of K. As
examples, one sees that the equation

N(@y + @02 +254/8) = 1
has infinitely many solutions in integers x;, x,, ¥; given by
X +254/2 = £ (144/2)%, and by x,+34/3 = +(2+4/3)",
where n = 0,1,2, ...; and the equation
N(xy +q Py + ... +q®-2Px, ;) =m,

where p, g are primes and m is any integer, has only a finite number of
solutions in integers x;,...,x, ;; for clearly the field generated by
¢''® over the rationals has only trivial subfields. It should be noted,
however, that, in contrast to the work of Chapter 4, the arguments
here are not effective and cannot lead to a determination of the
totality of solutions. In fact, apart from a few special results of
Skolem,f the only effective theorems established to date on equations
of norm form in three or more variables derive from the work on the
hypergeometric function referred to in § 5 of Chapter 4."

A generalization of Roth’s theorem in the p-adic domain was
obtained by Ridout¥ in 1957; in particular he proved that for any
algebraic number o and any € > 0, there exist only finitely many
integers p, ¢, comprised solely of powers of fixed sets of primes, such
that | —p/g| < ¢~ In this case, however, Theorem 3.1 gives rather
more; in fact, on taking o; = o and the remaining a’s as the given
t M.4. 191 (1971), 1-20.

1 For an account of this and associated topics one may refer to the excellent survey

of Schmidt; Enseignement Math. 17 (1971), 187-253.

§ Bibliography. | P.C.P.S. 63 (1967), 693-702.
N Mathematika, 4 (1957), 125--31; 5 (1958), 40-8; see also Mahler (Bibliography).
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primes, one sees at once that g can be replaced by (log ¢)—¢ for some ¢
depending only on & and the primes, a result moreover that is fully
effective. Further theorems in the context of p-adic approximations
follow from the other inequalities for |A| recorded in Chapter 3.

2. Wronskians

The Wronskian of polynomials ¢, (), ..., ¢,(x) of one variable is defined
as the determinant of order k with (j!)~!¢{’(x) in the ¢th row and
(J + 1)th column, where 1 < ¢ <k, 0 < j < k, and ¢ denotes the jth
derivative of ¢. Such Wronskians occurred in the original work of
Thue, and they sufficed for the expositions of Siegel, Dyson and
Gelfond; the arguments of Roth and Schmidt, however, involved the
concept of a generalized Wronskian. Suppose that ¢,,...,¢, are
polynomials in » variables zy, ...,z, and let A denote a differential
operator of the form

(a! .. Gu)) 2 (0fomy) .. (2]0,),

where j, + ... +j, = j. Then any determinant of order ¥ with some
A9, in the sth row and (j+1)th column is called a generalized
Wronskian of ¢,,...,¢,. There are clearly only finitely many
generalized Wronskians of ¢,,...,¢,, and when » = 1 the set reduces
to the original Wronskian. We shall require later the result that if
@1, ..., Py are linearly independent over their field of coefficients then
some generalized Wronskian does not vanish identically; proofs are
given, for instance, in the tracts of Cassels and Mahler,

3. The index

The proof of Theorem 7.1 involves polynomials P in kn variables

T (1 <1<k, 1 <m < n), homogeneous in xy,, ..., %, for each m.

Suppose that P has real coefficients and let L, (1 < m < ») be real

linear forms in ,,, ..., %,. Then the index of P with respect to

Ly, ..., L, and positive integersry, ..., r,, is defined asthe largest value of
(,7.1/71) oot (]n//rn)

taken over all sets jj, ...,J, such that the rational function
Pi(L4 ... Lin)

is in fact a polynomial. It is easily verified that, for any polynomials
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P, Q as above, the index, for brevity, ind, with respect to the L, and
' Satisfies ind (P + @) > min (ind P, ind @),

ind PQ = ind P +ind Q.

We shall require also the related concept of the index of a real
polynomial P(xy, ...,x,) with respect to rationals p,./q,, (g,, > 0) and
integers r,, > 0 (1 < m < n); this is defined as the index of the

olynomial .
polyn T - X P (%3, - F1 /)

in the 2n variables x,, (I = 1, 2) with respect to the linear forms

L, = qu®in—Pmom
and the r,,, where d,, denotes the degree of P in x,,. The index in the
latter sense occurred first in the work of Roth, and the generalized
concept was introduced by Schmidt.

In analogy with the notation of earlier chapters, we define the
height || P| of a polynomial P as the maximum of the absolute values
of its coefficients; we shall speak of the height only for polynomials with
rational integer coefficients, not identically 0. The same definition will
of course apply in the special case of linear forms.

Suppose now that P is a polynomial in kn variables as indicated at
the beginning of the section. Let L, ..., L, be linear forms as there,
with relatively prime integer coefficients, and let g, = | L,|. Further
let ry,...,7, be positive integers such that dér,, > r,; (1 <m < n),
where § = (¢/32)*"and 0 < ¢ < 1. We have

Lemmal. Ifgm > q7" (1 < m < n)and ¢d” > 8" where 0 < 9 < k,
and if also P has height at most ¢i™/® and degree at most r, in
Ly -+ Lims then the index of P with respect to the L, and r,, is at most €.

This is an extension, due to Schmidt, of the most fundamental
part of Roth’s work, sometimes called Roth’s lemma. The result
follows easily in fact from the case considered by Roth, as we now
show.

We assume, as we may without loss of generality, that q,, = |ay,|,
where K
Lm = lgla’lmxlm (1 L€M< n)

We shall further assume that (a,,, @,,)" is at most ¢¥-2/*-D; this
also involves no loss of generality, since a prime p can divide at most

t (a, b) denotes the greatest common divisor of a, b.
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k—2 of the integers (@,,,q,,) with 1 <1 < k, whence their product
divides ¢% 2. Let now P’ be the polynomial obtained from P by
successively removing, in some order, the highest power of

Z, (1<1<k3<m<n)

that divides P and then setting the variable to 0; further let P” be the
polynomial obtained by setting x, = 1 in P’ for each I. Then clearly
the index of P with respect to the L,, and r,, is at most the index of P”
with respect to — a4, /a,,, and r,,. Also, by assumption, the denominator
of a,,,/a,,,, When expressed in lowest terms, namely ¢,,/(@1, @an), is at
least gL/%. Hence we see that it suffices to prove the following modified
version of Lemma 1.

For any integers r,, (1 < m < n) as above and any rationals

Pl (m > 0)

in their lowest terms such that gi» > ¢1™ and ¢i" > 8, where 0 <5 < 1,
the index with respect to the p,,/q,, and r,, of any polynomial P(x,, ..., x,)
with height at most ¢} and degree at most r,, in x,, is at most €.

Proofs of this proposition, possibly in slightly adapted form, in
particular with 9 = 1, are given in several of the texts cited in the
BibLography, and our exposition can therefore be relatively brief. The
result plainly holds for » = 1, forifj, is the exponent to which x, — p, /g,
divides P(x,) then, by Gauss’ lemma, we have

P(zy) = (17— p1) 1 Q (1),

where @ is a polynomial with integer coefficients; thus the leading
coefficient of P is at least ¢ft, whence j,/r; < 0y < ¢, as required. We
now assume the validity of the proposition with » replaced by n—1
and we proceed to establish the assertion for » (> 2).

We begin by writing P in the form

¢0 %”o oot ¢s—1 glrs—l’

where the ¢’s and ¥’s are polynomials in the variables x,, ..., %,_, and
z, respectively with rational coefficients, and we choose one such
representation for which s (< r,+1) is minimal. Then there exist
Wronskians U’, V'’ of the ¢’s and ¢’s respectively which do not vanish
identically, and clearly W = U’V’ can be expressed as a determinant

oforder swith — no(inyt (@, ) Py, ... )

in the (¢ + 1)th row and (j + 1)th column, where the A% are operators

6 B1N
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as in §2 with j, = 0. Hence W is a polynomial with degree at most
sr; in ; and with W] < (8™ P|)* < g2,
where r = r, = maxr,,; here we are using the hypothesis ¢ > 8 and
the observations that A acting on any monomial in P introduces
a factor not exceeding 27%, that there are at most 2"* such monomials,
and that the number of terms obtained on expanding the determinant,
for W is s! < 2. Now, again by Gauss’ lemma, we have W= UV,
where U, V are polynomials with integer coefficients in the variables
%y, ..., T,_, and x, respectively, given by some rational multiples of
U’, V'; and clearly the bound for | W| obtains also for [|[U| and || V|.
Thus, by our inductive hypothesis, it follows, on taking 26 in place of 8,
that the index of U with respect to the p, /g, and 7, is at most
2-5+1/2""1ge2 Further, by the case n = 1 of the proposition together
with the hypothesis ¢ir > ¢™, the samebound appliesfor theindex of V.
We conclude therefore that the index of W is at most §se?.

On the other hand, the index of the general element in the deter-
minant for W is at least

n—1
¢i_ X .7m/ Tons
m=1
where ¢, = 6 —1i/r,, 6 denotes the index of P, and
At Fipa=j<s—1<r,;
further, by hypothesis, we have dr,, > r,,., and so the above sum is at
most 6. Hence the index of W is at least

s—1 s—1
Y, max (¢;—4,0) > ¥ max (g, 0)—sb.
i=0 1=0

But if 0r, < s—1 then the last sum is
([0r,] +1) (0 — [Or,]/(2r,)) = 16,
and if fr,, > s—1 thenitis
—3s(s—1)/r, > 30s.
On comparing estimates, we obtain
max (40, }6?) < 62+ 8 < 13,

whence @ < ¢, as required.
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4. A combinatorial lemma

We prove now a lemma of a combinatorial nature relating to the
law of large numbers.t A result of thiskind occurred first in the work of
Schneider, and it was utilized later by Roth who gave a simplified
proof due to Davenport. Another proof, attributed to Reuter, and
furnishing a slightly stronger theorem, was given by Mahler in his
tract, and Schmidt subsequently obtained the generalization we
establish here.

Lemma 2. Suppose that ry,...,7, and k are positive integers and
that 0 < € < 1. Then the number of non-negative integers

Jm (A <lIgk, 1< m<n)

satisfying
k n
Zjlm=rm (1 <m<n), p jlm/rm<n/k_€n’
i=1 m=1
is at most (r1 +he— 1) (r"+k~ 1) e—tein,
7'1 ’rn

We commence the proof by observing that the required number N of

integers j;, is given by S0 012) oo ValGan)s

where the sum is over all non-negative integers j,,, ...,J,, satisfying
the given inequality, and »,,(j) denotes the number of solutions of the
equation

k
2 Im=Tm—)
1=2

in non-negative integers fo,,, .-, that is

vl = (1577,

Hence we see that the multiple sum

e B il e valimlexp [t (nft= 2 juira))

Hh=0 jm=

is at least N et<’», Now the sum can be written alternatively in the form

I {3 vulin)exp (iepm)},
m=1 {j 0

t Cf. the papor of Wirning cited carlior: Proc. Symposia Pure Math. (Amer. Math. Soc.),
20 (1971), 218 47.

6-2
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where p,, = 1/k—j, /1., and clearly |p,| < 1. But if |2} <1 then
¢® < 1+x+a? and so

exp (§6Pm) < depm+exp (3€?).
Further we have rf‘, ViJm) P = 0;
im=

for p,, can plainly be expressed as

(’rm "'jm)/’rm_ (1 - 1/]0),

and it is easily verified by induction on r that

rofr—j+k-2 _ r+k—1
j=20 k—2 - r ?

S5 (-7

Thus, on appealing again to the first of the above binomial identities,

we obtain
ﬁ {(rm +k—- 1) eieg} > Neikezn,

m=1 rm

and this gives the asserted estimate.

5. Grids

Let T be a subspace of k-dimensional Euclidean space spanned by
linearly independent vectors uy, ..., u,_;. By a grid of size s on T' we
shall mean the finite set of vectors of the form

where wy, ..., w;,_, run through all rational integers with 1 < w, < s.

Now let 7), (1 € m < n) be any subspaces as above, and let I",, be
a grid of size s, on 7},. Further let 7', T signify the cartesian products
Tyx..xT, and I';x...x T, respectively. We shall denote by P
a polynomial as indicated at the beginning of §3 with degree r,, in
Zims - s Lim» a0d we shall signify by AY) a differential operator as in § 2,
acting on z,,, ..., 2,,. The following simple lemma, due to Schmidt, is
fundamental to the proof of Theorem 7.1.

Lemma 3. If, for some integers t,, (1 < m < n) with 8,(t,+1) > 7,
all polynomials AYY ... A P with j,, < t,, vanish everywhere on T, then
P vanishes identically on T.
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It is clear that the lemma follows at once by induction from the case
m = 1, and it will suffice therefore to prove the latter. Further, one can
obviously assume, by applying a linear transformation, that 7}, is the
plane 2,,, = 0, with basis consisting of the first £ — 1 rows of the unit
matrix of order . Thus, omitting the suffix m, we see that it is enough
to prove:

A polynomial P(x,, ...,z;_;) with degree r vanishes identically if all
ADP with j < tvanish at all integer points (wy, ..., wy_y) with 1 < w; < s,
where s(t+1) > r.

Here Al denotes a differential operator on #, ...,2,_, of order j. The
assertion is clearly valid for % == 2, since a polynomial in one variable
with degree r cannot have more than r zeros, and we shall assume the
proposition when k is replaced by k— 1. If now P does not vanish
identically then there is a largest integer ¢ such that the rational

function Q= (x,—1)9...(x,—8)P

is in fact a polynomial, and since, by hypothesis, s(t+ 1) > r, we have
g < t. Further, by choice of ¢, one at least of the polynomials
Qwy, 2y, ..., 25,1} With 1 < w; < 8 does not vanish identically; let
this be R. Then AR vanishes at all integer points (w,, ..., w,_;) with
1 < w; < 8, where A is any differential operator on z,, ..., z,_, with
orderj < t—gq.But R has degree at most r —s8q < (!—g¢+1) 8, and this
is plainly contrary to the inductive hypothesis. The contradiction
establishes the assertion.

6. The auxiliary polynomial

For each m with 1 £ m < n we shall denote by L, (1 < < k) linear
forms in 2y, ..., 2;, with real algebraic integer coefficients. Further
we shall denote by d the degree of the field K generated by all the
coefficients over the rationals, and we shall signify by ¢, ¢,, ... numbers
greater than 1 which depend on these coefficients only.

Let now ry,...,r, be any positive integers, and let r = maxr,,.
Further suppose that 0 < € < 1 and that ei*» > 2kd. Adopting the
notation of §3, we have

Lemma 4. There is a polynomial P with degree at most r,, in
Zims ++«» Lpo ANA with height at most c§ such that, for eachlwith 1 < 1 < k,
the index of P with respect to the L, and r,, 18 at least njk — en.

"
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It can be assumed, without loss of generality, that, for all I, m, the
coefficient of #,,, in L,,, say a,,, is not 0. Then P has to be determined
such that, for all l and all non-negative integers j,, ..., 4, with

% JmfTm < nlk—en,
m=1
the polynomials
(g2} Ju )71 (0)0ryy) ... (00, ) n P

vanish identically when — L,,, with 2;,, equated to 0, is substituted for
21, and the factor a,, is included to multiply each of a,,, ..., %4,,.
Now these polynomials are homogeneous in x,,,, ..., %, with degree
m—Jm and hence, by Lemma 2, they have, in total, at most kN e~i<*»
coefficients, where IV denotes the product of binomial factors occurring
in the enunciation of the lemma. Each coefficient is a linear form in the
coefficients of P, and there are precisely N of the latter. Furthermore,
the coefficients in the linear forms are algebraic integers in K with
sizes at most cj (cf. the estimates in §3). It follows, on utilizing an
integral basis for K and recalling the hypothesis ei**» > 2kd, that one
has to satisfy at most 3NV linear equations with rational integer
coefficients each having absolute value at most cf (cf. § 3, Chapter 6).
The required result is now obtained from Lemma 1 of Chapter 2.

7. Successive minima

We recall from the Geometry of Numbers that if R is any convex body
in k-dimensional Euclidean space, then the numbers A, (1 <1 < k),
given by the infimum of all A > 0 such that AR contains [ linearly
independent integer points, are termed the successive minima of R,
and they have the property that A;...2A,V, where V denotes the
volume of R, is bounded above and below by positive numbers
depending only on k.

We now combine the preceding lemmas to obtain a proposition on
the penultimate minimum of a certain parallelepiped, which will be the
main instrument in the proof of Theorem 7.1. We shall denote by
M, ..., M, linear forms in z,, ..., x, with real algebraic integer coeffi-
cients constituting a non-singular matrix A, and we shall signify by
My, ..., M; the adjoint linear forms with coefficients given by the
columns of A-1. Further we shall signify by 8 some non-empty set of
suffixes ¢ such that M} does not represent zero for any integral values,
not all 0, of the variables; the assumption that S exists involves, of
course, some loss of generality. We prove:



SUCCESSIVE MINIMA 77

Lemma 5. For any { > 0 there exists ¢ > 0 such that for all positive
Bs ooy g SQUSTYIing py ... uy = 1 and p; 2 1 for ¢ in 8, the penultimate
minimum A,_y of the parallelepiped | My| < py (1 <1< k) exceeds p—t,
where u denotes the maximum of py, ..., jy, and c. ,

It will be seen that the lemma immediately implies Roth’s theorem,
that is the case n = 1 of Theorem 7.1; this follows on taking

M=oz, —x, My=u,
andS to consist just of the suffix 2, as is possible since o, is irrational.

Weshow first that it suffices to prove a modified version of Lemma 5.
Suppose that ¢ > 4% and let wy,...,w; be defined by g = @. Then
since s, ... 4t = 1 wehave w; +... + v, = 0and clearly w, > Ofor4in 8.
Clearly also w; < 1 for all /I and, since again x;...4, =1 we have
M 2 @1, whence w; > — 1. Now for any positive integer N there are
rationals o}, ..., w, with denominator N satisfying |w,—wj| < 1/N and
loj] < 1foralll, and also w;+... 4w = 0; indeed one has merely to
take Nw; = [Nw,] and, having defined wy,...,w;_;, to take Nw; as
[Nw] or —[— Nw;] according as w; + ... + w;_; does or does not exceed
Wy + ... + 4. Plainly the wy,...,w; belong to a finite set of rationals
independent of ¢, and the minimum A;_; of the parallelepiped
| M| < @ (1 <1< k)exceeds @ PV2,_,. Hence it is enough to prove:

For any real w,,...,w, with o;+...4+ 0, =0, o <1 (1 <1 <k)
and w; 2 0 for all ¢ in 8, and for any { > 0, there exists C > 0 such that,
Sfor all @ > C, the mintmum A;_, of the parallelepiped

Ml <@ (1<I<k)
exceeds Q¢.

We shall suppose that { < 1, as obviously we may, and we shall
signify by d the degree of the field generated by the elements of A over
the rationals. Let € be any positive number less than §/(8%)2, let n be
any integer satisfying the condition preceding Lemma 4, and let & be
defined as in Lemma 1. We shall assume that there is an unbounded set
of values of @ such that A,_; < @¢, and we shall ultimately derive a
contradiction. We select a sufficiently large ¢, in this set, that is
@, > ¢, where ¢,, like ¢,, c3 below, depends onlyon A, &, », d, €, 8, {and
the @’s. We then select further elements §,, ..., @, in the set such that
Qf,f > Qpu (1 <m < n), whence clearly ¢; < ... < @,. Finally we
choose positive integers 7y, ..., 7, such that @i": > @, and

Qr < @ <@t (1 <m < n);

then plainly the condition preceding Lemma 1 is satisfied.
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We observe now that the hypotheses of Lemma 4 hold when
L, = M(x,,), where x,, denotes the vector (y,,, ..., Zz,); let P be the
polynomial constructed there. Further we note that, for any @ as
above, there exist linearly independent integer points uy, ..., u, with
U, in A R, where R denotes the given parallelepiped and A,, ..., A its
successive minima. Moreover, there is a linear form L with relatively
prime integer coefficients, unique except for a factor +1, which
vanishes at u,,...,u,_;; we take u,, and L, to be these u, and L
respectively when @ = @,,. We shall verify later that, if @ is sufficiently
large, then ¢ = |L| satisfies @° < ¢ < @, where ¢, ¢’ are positive
numbers depending only on § and d. Assuming this for the present, it
follows that all the hypotheses of Lemma 1 are satisfied with 9y = ¢/¢’,
provided that ¢;, and so also ¢; and @,, are large enough. Hence we
conclude that the index of P with respect to the L,, and r,, is at most e.

We proceed to prove that, with the notation of §5, all polynomials
AP with ”

A=A . AW, 3 §./rm < 2en
m=1

vanish everywhere on T, where I, is the grid of size [¢71]+ 1 on the
space 7;, spanned by u,, (1 €1 < k). This implies, by Lemma 3, on
taking t,, = [er,], that all polynomials AP, with %j,./7,. < en, vanish
identically on the n(k — 1)-dimensional space of solutions of
L=..=L,=0.

But the latter contradicts the above conclusion concerning the index
of P, and the contradiction establishes the lemma. To prove the pro-
position, let AP be any of the polynomials in question and let P’ be the
polynomial in new variables vy, obtained from AP by the linear
substitution ¥, = L,,,. Then it is readily verified that P’ has height at
most c§, where » == max r,,. Further, since, by assumption, A;_; € @-¢,
we have for any x,,on T,

[l < Ble+1) Q¢ < @,

Thus, by Lemma 4, it follows that, for all points on I, we have
|AP| < cje?, where

8

k n

I ((z), - ég).hm log Qm’
I=1m=1
and j;,, are some non-negative integers with

k n
Yim<rm (1<m<gn), nlk-= T jiu/rm<3en (1<l<k).
l=1 m=1
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Denoting, for brevity, the left-hand side of the last inequality by #,
we see that, by the first inequality, Ay +... +A; > 0, and so both
inequalities together imply that |k < 3kne. Further, since |&] < 1,
we obtain, in view of the initial choice of ry, ..., 7,,

E n
8<rlog@ ¥ 3 {(0r—38)Jum/rm + 26}

I=1m=1
But now, by virtue of our estimate for 4; and the hypothesis
wy+...+ o, =0,

the double sum here differs from — }¢» by at most 8%%*ne. Since, by
definition, € < &/(8%)?, it follows that |AP| < @73 < 1, provided @,
is sufficiently large. On the other hand, AP is a rational integer for all
points on I', and hence AP = 0, as required.

It remains only to prove the assertion concerning ¢ = || L. Let U be
the matrix with columns u,,...,u, and let v,, ..., v; be the rows of
U-1. Then clearly pv,, is the coefficient vector of L for some rational p.
Since L(u,)is an integer and v u, = 1, p isin fact an integer. Further p
divides det U, for plainly U~ = adj U/det U.T Furthermore we have
det U <€ 1, where the implied constant depends only on A,* for
certainly R has volume > 1 and hence, by the property of successive
minima quoted at the beginning, det (AU) < 1. It follows that each
element of (det U) v, is a rational integer < ¢. Hence the element in
the kth row and Ith column of adj (AU), namely (det (AU)) M;(v,), is
an algebraic integer with size < ¢. But by hypothesis we have
A1 < Q% and @y +...+0,=0, and thus the element is also
<€ QoD We conclude that, for I in S, the element is both
> g %and € Q~%V¢, and, since S is assumed non-empty, this gives
the required lower bound for ¢. The upper bound follows from the
identity U-1 = (AU)~1 A, on observing, as above, that the elements in
the kth row of (AU)~L are < Q.

8. Comparison of minima

We prove first a general lemma of Davenport, and we proceed then
to show that, with some proviso, the minima A,_; and A, of the
parallelepiped of Lemma 5 differ only by a small factor. Constants
implied by < will depend only on k.

+ ‘det’ and ‘adj’ are abbreviations for determinant and adjoint respectively.

1t Wae are using Vinogradov's notation; by a € b one means |a| < bc for some constant
¢, and similarly for ».
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Lemma 6. Let Ly, ..., L, be real linear forms with determinant 1 and
let A, ..., Ay, be the successive minima of the parallelepiped
Il <1 (1<I<k).
Suppose that p; = ... = p, > 0 and that

PALS s KPPy pr= 1
Then for some permutation py, ..., Py, Of P, ---» Pr» the successive minima
AL ..., A} of the parallelepiped p|Lj| <1 (1 <1 < k) satisfy

AN <X <l (L<I<h).

Proof. There certainly exist linearly independent integer points
Xy, ..., X;, such that one at least of | Ly|, ..., | L;| assumes the value A, at
x;, and we denote by S; the space spanned by X;, ..., X;. Further, for
each [ > 2, there is a non-trivial linear relation a;L;+...+aqL; = 0
satisfied identically on §_;, and L, ..., I, can be permuted so that |a,|
is maximal; this gives

Lol + o+ | D] > 3| 2| + . + | L)
identically on §,_,, whence by induction
TARSIRTAPS S0 AU AT
identically on S for ! = 1,2, ..., k. Now for any j it is clear that every
point in §; not in §;_, satisfies
max (lLll’ veey ILkI) Z Aj,

and thus, in view of the inequality obtained above, it satisfies also

max (py | Ly, ..., pr | Lae|) > p; Ay

By hypothesis, p;A; > p,A, for j > 1, and the required lower bound for
A; follows on taking pj,...,p; to be the permutation of p,,..., p;
inverse to that associated with L, ..., I,. The upper bound is a conse-
quence of the equation p; ... p;, = 1 together with the property, noted
earlier, that A,... A, and A ... A; are both < 1 and > 1.

Lemma 7. The last two minima of the parallelepiped of Lemma 5
satisfy Ay_y > A p7*, provided that A p; > p=* for all i in 8S.

Proof. The hypotheses of Lemma 6 hold with L; (1 < I < k) given by

-1 d
I M an = p/Al (1 < l< k’), Pr = P/Ak—l'
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where p is defined by the equation p, ... p, = 1. Let py, ..., p;, be the
permutation of p,, ..., p, indicated in the lemma,and let u; = w/p;.
Assume first that g > 1 for all ¢ in 8. Then from Lemma 5 with g
replaced by g, we infer that, for any {’ > 0, there exists ¢’ > 0 such
that A,_; > #'~%, where 4’ denotes the maximum of gy, ..., u7, and ¢’.
On the other hand, from Lemma 6, A;,_; <€ p;_;A;_; = p, and clearly,
since A; ... A, € 1, we have p* <€A;_;/A,. Thus it suffices to prove that
W' < ptif ¢’ is chosen sufficiently small. But by hypothesis, since S is
assumed non-empty, we have A;u > u—¢; further, since A; > A; for
all I, we see that p > A; and A¥~'A,,_; <€ 1. Hence we obtain

M S phpalp < pATE < prEEDHL,
and the required result follows. If, contrary to the above assumption,
i < 1 for some ¢ in §, then, on observing that by hypothesis
pri = Ay > Bt

we obtain p > ¢ and the required result again follows.

9. Exterior algebra

For any vectors Xy, ..., X;in R¥with1 < I < k,onedenoteshyX; A... AX;
the vector in B™ whose elements are the m = (I;) subdeterminants of

order ! formed from the k by I matrix with columns x;, ..., X;. We shall
utilize some well-known properties of this product; in particular, we
shall require Laplace’s identity

(XA AX) (YA - AY) = det (X)),
where on the left one has the usual vector dot product, and also the
relation det A, = (det A)mik,

which holds for any matrix A of order k& with column vectors a,, ..., a;,
say, where A, = a; A ... Aa; and o runs through all sets of ! distinct
integers iy, ..., %, from 1, ..., k.t

We shall need, in addition, the following lemma, due to Mahler, on
compound convex bodies. A will signify a matrix as above with
det A = 1,and, as in § 8, constants implied by < will depend only on k.
Further we shall denote by ax the linear form in the elements of x with
coefficient vector a.

t Short proofu are given in Sohmidt's traot (Bibliography).
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Lemma 8. The successive minima Ay, ..., A and vy, ...,v, of the
parallelepipeds |a,x| <1 (1<i<k) and |A,X]| < 1, respectively,

satisfy A €v; <A, (1<i<m),

where T runs through all sets o as above, A, = I1A;, the product being taken
overalljinr,and A, <A, < ... <A,

Proof. Let x,, ..., X, be linearly independent integer points such that
|a;x;| < A; (1 <j < k), and let X be defined like A, above, with X in
place of a. By Laplace’s identity we have

|A, X,| = |det (a;X;)| < m!A,,

where %, j run through all elements of o, 7 respectively. Hence, for
each ¢ with 1 <i <m, we have |A,X, [ <A, and so »; € A,. But
since, by hypothesis, det A = 1, we have det A, = 1, and thus the
volume of the parallelepiped |A,X]| < 1is 2™, Thus »;...v,,> 1 and
since A,, ... A, < 1it follows that v, > A,, as required.

10. Proof of main theorem

It will suffice to prove Theorem 7.1 under the assumption that
a,, ..., &, are real algebraic integers, for clearly the general result then
follows on multiplying each a; by the leading coefficient in its minimal
polynomial. We shall signify by a; (1 < j < n) the vector in R** given
by (e, @;), whereey, ..., e, denote the rows of the unit matrix of order ».
Further, for brevity, we shall write ¥ = n+ 1, and we shall denote by
a, the vector (0, ..., 0, 1) in R*. Constants implied by <€ or > will
depend onlyona,, .. ) , &y, k, eand the quantities £, { to be defined below.

We show first that the theorem is a consequence of the following
proposition.

For any & > 0 and any positive numbers iy, ..., py with puy ... pg, = 1
and p; < 1(1<j<k), the first minimum A, of the parallelepiped
la;x| < p; (1 <j < k) exceeds p*if p> pyand p > 1.

The proof proceeds by induction on n; we have already remarked
that the case n = 1is an immediate consequence of Lemma 5, and we
assume now that the theorem holds when # is replaced by n— 1. Let
g be a positive integer satisfying the inequality ocecurring in the
enunciation, and let

Hy =g |gay| (1 <j < m).
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Further let g, = (4, ... p,), where k = n+1 as above. Then clearly
M > @M1 and moreover the first minimum A; of the parallelepiped
la x| < g; (1 <j < k) is at most ¢—/@), But, on appealing again to the
given inequality and applying the inductive hypothesis, we see that,
if ¢ > 1, then x; < 1 for all j < k. Hence the proposition above shows
that A, > g~ forany £ > 0and any g with # > 1and g > g,,. Further-
more, by the case n = 1 of the theorem, we have u; > ¢ (1 < j < n),
whence g, < ¢*. Plainly the estimates for A, are inconsistent if £ is
sufficiently small, and the contradiction proves the theorem.
Preliminary to the proof of the proposition, we observe that, with
the notation of § 9, the linear forms 3, = A, X satisfy the hypotheses of
§ 7 with 8 given by those sets 7 which include k. For it is easily verified
from the Laplace expansions of A that, as o runs through the comple-
ment of 7 in 1, ..., k, the forms A X constitute the set adjoint to the
M,, except possibly for a sign change; further, if o does not include %,

we have A X=X, +Z(ta) X, yipo

where the summation is over all j in o, on the right there occur the
co-ordinates of X, and o —j+k denotes the set o with k in place of j.
By hypothesis 1, a,, ..., &, are linearly independent over the rationals,
and thus we see that A_X + 0forall integer vectors X # 0, asrequired.

The proof of the proposition proceeds by induction on k; the result
plainly holds for k& = 2 by Lemma 5, and we assume now that it has
been verified for all values up to k— 1. Let I be any integer with
1 <! <k and, for any set 7 of I distinct integers from 1,...,k, let
#, = Ilu;, where the product is over all j in 7. By Lemma 7 we see that
the successive minima »,, ..., v, of the parallelepiped |M,| < g, satisfy
Vo1 > V7% for any £ > 0, provided that g > 1, u > p, for all r and
v p, > p~tfor7in 8. Further, with the notation of Lemma 8, it is clear
that 7, and 7,,_, consist of the integers k -1+ 1,k—142,...,kand k-1,
k—1+2, ..., krespectively. Thus, under the above conditions, we have

Apalpgin e A > gy oo R,

that is A, > A,_;,147%¢. The required inequality A, > x~¢ follows on
applying the latter with I = 1,2,...,k- 1, noting that A; > 1, and
taking ¢ sufficiently smail.

Sinceevidently g, < g, for all 7, it remains only to prove that, for r in
8,vp, > p~tforany pwithx >'tand g > p,. Infactitsuffices to show
that A, > u—t, for, again from Lemma 8, we have r, > A, ... A, > AL,
Now, by thedefinition of A,, the parallelepiped |a,x| < /\,,uj(l £j<k)
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contains an integer point x % 0; in fact the kth co-ordinate of x is not
0 since A, < 1 by Minkowski’s linear forms theorem, whence

Auy< 1l (1<j<k),

and a,x is simply the jth co-ordinate of x when the kth co-ordinate
vanishes. It follows that, if r is any element of 8, then the parallel-
epiped in R! given by |a;x| < Ay, where  is restricted to 7 and the
co-ordinates of x with suffixes not in 7 are disregarded, also contains an
integer point x # 0. Hence the first minimum A; of the parallelepiped
|a;x| < g in R, where p} = p,/utl, is at most A,ut". It is therefore
enough to prove that A; > g#~¢; but this follows from the inductive
hypothesis since clearly ITx; = 1 and g, > 1. The theorem is herewith
established.
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MAHLER’S CLASSIFICATION

1. Introduction

A classification of the set of all transcendental numbers into three
disjoint aggregates, termed S-, T- and U-numbers, was introduced by
Mabhler® in 1932, and it has proved to be of considerable value in the
general development of the subject. The first classification of this
kind was outlined by Maillet* in 1906, and others were described by
Perna’ and Morduchai-Boltovskoj;' but to Mahler’s classification
attaches by far the most interest.

As in the previous chapter, we define the height of a polynomial as
the maximum of the absolute values of its coefficients, and we shall
speak of the height only for polynomials with integer coefficients, not
all 0. Let now £ be any complex number, and for each pair of positive
integers n, h, let P(x) be a polynomial with degree at most » and height
at most h for which | P(£)| takes the smallest positive value; and define
w(n, k) by the equation |P(§)| = A~ ®_ Further define

o, = limsupw(n,b), o =limsupo,,
h—> o n—>w
and let v be the least positive integer n for which w,, = oo, writing v =
if, in fact, w, < co for all n. Mahler characterizes the set of all complex
numbers as follows:

A-number w=0, v=o0,
S-number 0 < w < 00, v = 00,
T-number ® = 00, ¥ = 00,
U-number © =00,V < 0.

We shall prove in §2 that the A-numbers are just the algebraic
numbers; thus a transcendental number § is an S-number if w(n, k) is
uniformly bounded for all n, h, a U-number if, for some n, w(n, k) is
unbounded, and a T-number otherwise. Further we have:

t J.M. 166 (1932), 118-36.

1 Bibliography.

§ (iorn. Mat. Battaglini, 52 (1914), 305-65.
| Mat. Shornik, 41 (1934), 221-32.
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Theorem 8.1. Algebraically dependent numbers belong to the same
class.

Theorem 8.2. Almost all numbers are S-numbers.

Here ‘almost all’ is interpreted in the sense of Lebesgue measure
theory, the linear and planar measures being taken for the real and
complex numbers respectively.

The integer v defined above is called the degree of £. It is clear that
the Liouville numbers, mentioned in Chapter 1, are U-numbers of
degree 1, and LeVeque® proved in 1953 the existence of U-numbers of
each degree; we shall establish the latter in § 6. For many years it was
an open question whether any 7-numbers existed but, in 1968, an
affirmative answer was obtained by Schmidt* on the basis of Wirsing’s
early version of Theorem 7.2, and this will be the theme of § 7. It is
customary to subclassify the S-numbers according to ‘type’, defined
as the supremum of the sequence w,, w,, .... We shall show in § 2 that,
for any transcendental £, w,, is at least 1 or }(1—1/n) according as £ is
real or complex, whence the type of £ is respectively at least 1 or 4. In
1965, Sprindzuk, confirming a conjecture of Mahler, proved that
almost all real and complex numbers are S-numbers of type 1 and
respectively. Moreover it was recently demonstrated by a refinement
of this result that there exist S-numbers of arbitrarily large type. Thus,
apart from a small gap in the kind of T-numbers that have so far been
exhibited, the transcendental spectrum is, in a sense, complete. The
latter measure-theoretical propositions will be the topic of the next
chapter.

In the light of Theorem 8.2, one would expect any naturally defined
number such as ¢, 77, e” and loga for algebraic « not 0 or 1 to be an
S-number.In 1929, Popken proved thatindeed e is an S-number of type
1, and we shall confirm the result in Chapter 10. Theorem 3.1 shows
that 7, and in fact any non-vanishing linear combination of logarithms
of algebraic numbers with algebraic coefficients, is either an S- or a
T-number, but the latter possibility has not, as yet, been excluded.
From the case = =1 of Theorem 7.1 one sees, for instance, that

@®
3 a~%" is transcendental for any integers @ > 2, b > 3, and, in the
n=1

same context, Mahler® proved in 1937 that also the decimal -1234...,

t+ J. London Math. Soc. 28 (1953), 220-9.
1 Symposia Math. IV (Academic Press, 1870), pp. 3--26,
§ N.A.W. 40 (1937), 421-8.
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where the natural numbers are written in ascending order, is tran-
scendental; and here again it has been proved that these are either S-
or T-numbers.! For e”, however, the possibility that it is a Liouville
number has not even been excluded at present. Note that, by virtue
of Theorem 8.1, the above results enable one to furnish many examples
of algebraically independent numbers; indeed if £ is any U-number,
such as for instance X10-"', and if y is, say, ¢ or 7 or £10~1¢" or Mahler’s
decimal, then certainly £, 7 are algebraically independent.

In 1939, Koksma introduced a classification closely analogous to
that of Mahler, which has also proved illuminating. Let § be any
complex number and for each pair of positive integers =, %, let a be an
algebraic number with degree at most » and height at most 2 such
that |£—a| takes the smallest positive value; and define w*(n,%) by

the equation |E—a| = Aot m,

Koksma classified the complex numbers as A*-, S*-, T*. or U*-
numbers in the same way as Mahler, but with «* in place of w. Thus
a transcendental number £ is an S*-number if w*(n, k) is uniformly
bounded, a U*-number if, for some n, w*(n,A) is unbounded, and
a T*-number otherwise. There is an exact correspondence between the
two classifications, the S*-, T*- and U*-classes being in fact identical
with the 8-, T- and U-classes respectively; moreover, the functions
w,, and w} take comparable values. Indeed it is easily verified that
w} < w,, and simple lower bounds for ¥ in terms of w,, were obtained
by Wirsing.¥ These imply, in particular, that o} = 1 when o, =1,
whence, in view of SprindZuk’s theorem, we have o} = 1 for almost all
real £. But it remains an open question whether o} > 1 for all real £.

2. A-numbers

We prove here that the A-numbers are just the algebraic numbers.
Suppose first that £ is a real transcendental number. We consider the
set of all numbers @(£), where @ denotes a polynomial, notidentically 0,
with degree at most » and with integer coefficients between 0 and 4
inclusive. The set evidently contains (% + 1)*+! — 1 elements each with
absolute value at most ck for some ¢ = ¢(n, §). If now we divide the
interval [ —ch, ch] into A7+! disjoint subintervals each .of length 2cA-",
then there will be two distinct numbers @,(£) and @y(£) in the same

1 Acta Math. 111 (1964), 97-120.
3 For references and further discussion soo Schnoidor (Bibliography).
§ J.M. 206 (1981), 67-77.
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subinterval. Thus the polynomial P = @, — @, satisfies | P(§)| < 2ch—
and so w,, > 1. Similarly, if £ is complex, we divide the intervals
[—ch, ch] on the real and imaginary axes into at most A¥»+D disjoint
subintervals each of length at most ¢’A~#»~D for some ¢’ = ¢'(n, £), and
there will be two distinct numbers @,(§) and @,(£) with real and
imaginary parts in the same subintervals. Thus we have

w, > 1(1—1/n).

Now if £ is algebraic with degree m, then for any polynomial P as
above, P(£) is an algebraic number with degree at mostm and height at
most ch for some ¢ = ¢(n, £). Hence either P(§) = 0 or |P(§)| > ¢'A™™
for some ¢’ = ¢'(n, £) > 0. It follows that nw(n, A) is uniformly bounded
for all n, A, and this proves the assertion.

3. Algebraic dependence

Our purpose here is to prove Theorem 8.1. Suppose that £, # are
algebraically dependent. Then they satisfy an equation @Q(£,7) = 0,
where @(x, y) is a polynomial with, say, degree k in z, ! in y, and with
algebraic coefficients, not all 0. Without loss of generality we can
suppose that £, 7 are transcendental, for otherwise they would both
be algebraic and so belong to the same class; also we can suppose that
the coefficients of @ are rational integers, for this can evidently be
ensured by taking, in place of @, a product of its conjugates. Moreover
we can suppose that all the zeros £, = £, £,, ..., £, of Q(z,7) are tran-
scendental; for if one of these were algebraic then its minimal defining
polynomial, say p(x), would divide all the coefficients of Q(x,y)
regarded as a polynomial in y, and it would therefore suffice to con-

sider Q(z, y)/p(x) in place of Q(x, y).
Let now P and w(n, ) be defined as at the beginning of § 1 and put

J = P(&) ... P(&).
Clearly we have | J| < oy hrmstm WyHh—1

where c,, like ¢,, ¢, below, depends only on £, %, n and Q. Further, J is
symmetric in £, ..., §; and so, by the fundamental theorem on sym-
metrie functions, it can be expressed as a polynomial in the elementary
symmetric functions with total degree at most » and with height at
most cgh*. Now each elementary symmetric function is given by
+ ¢;/qo, Where

Q=z, 1) = do(m) =¥+ qy(n) 21 + ... + (7).
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Hence g3 J is a polynomial in 7 with degree at most In and height at
most A’ = cyh¥. If therefore w'(n, k'), w,, and v’ are defined for 7 in the
same way as o(n, b), @, and  were defined for £, we have

h'mm’ in, r’) > clhnm(n, h)——k+1_

This gives klnw;, > nw, —-k+ 1, whence klo’ > w. Similarly, on inter-
changing £ and % we obtain klw > &' and Theorem 8.1 follows.

4. Heights of polynomials

We establish now two lemmas which will be employed in the proof of
Theorem 8.2 and in the next chapter. The propositions will be proved
for polynomials with arbitrary complex coefficients, and here no
restriction will attach to the definition of the height. P(z) will denote
a polynomial with degree » and height %, and constants implied by
< or > will depend only on =.

Lemma 1. For some integer j with 0 < j < n we have
h < |P(j)| < b

Proof. 1t is readily verified that

2, _P()A(x)
P(zx) = et

@ =2 T0) -
where A(z) = z(x —1)... (x—n), and A’ denotes the derivative of 4.
Now we have |[4'(j)] > 1, and clearly also the coefficients in the poly-
nomials A(z)/(z—j) are < 1. Thus we see that |P(j)| > & for some j,
and obviously we have |P(j)| < & for all j. This proves the lemma.

Lemma 2. If P = P,PB,... B,, where P, is a polynomial with hetght
hy, then Bahy by €h < hihy... by

Proof. The right-hand estimate follows at once from the observation
that every coefficient in P can be expressed as a sum of <€ 1 terms each
given by a produet of k coefficients, one from each of the P;.

To establish the left-hand estimate, we begin by choosing an integer
7 to satisfy Lemma 1, and we denote by H, the height of the polynomial
Fy(x+j). It is clear, on expressing Fy(x) as a polynomial in z —j, that
h; < H,.Now if pisany zero of P(z +j), we deduce from the mean value

theorcm k< |PG)| = | P +5) = PG)| = 9] |P(E+5)]
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for some £ with |£| < |y|. Hence if |y| < 1, we have & < |y| b, that is
|7| > 1. But the zeros of P(x +j) are included in those of P(z +5), and
each coefficient in Pz +j) can be written as the product of the con-
stant coefficient F;(j) together with an elementary symmetric function
in the reciprocals of the zeros. Thus we obtain |Py(j)| > H;, and the
lemma follows since P(j) = Py(5)... B(J)

5. S-numbers

We proceed now to prove Theorem 8.2 for complex numbers in terms
of planar Lebesgue measure; the argument for real numbers is similar.
Again we shall speak of the height only for polynomials with integer
coefficients.

Wenote first that if £ is any complex number and P is any irreducible
polynomial with degree at most » and height at most &, then the
nearest zero a of P to £ satisfies

£~ | < 27 |PE)] |P'(e)]
for if &' is any other zero of P we have
oot < E—al +[E-a| < 2]E-a].

Further we observe that |P’(a)| > k~"; for if p denotes the leading
coefficient of P and if «y, ..., a,, are any distinet conjugates of « then,
on applying Lemma 2 with P, given by x—a,, one sees that the
algebraic integert px, ... &, is '€ h, whence the norm of P’'(a) multiplied
by p*lis € h*|P'(a)|. If now £ isa T'- or U-number then, by Lemma 2,
there exist, for some #, infinitely many polynomials P as above such
that |P(§)] < h~*», and so the nearest zero o of P to £ satisfies
|E—a| < =3, Hence every T'- and U-number belongs to the elements
of infinitely many sets S(n, k) for some n, where S(n, h) consists of all
discs centred on the algebraic numbers with degree at most n and
height at most &, and with radius A—%». But there are < h**! elements
in each S(n, h) and thus their total area is <€ h~2. Since X%~2 converges,
it follows that the set of all 7'- and U-numbers has measure zero, as
required.

6. U-numbers

We establish here the existence of U-numbers of each degree. In fact
we shall show that, for any positive integer n, {1* is a U-number of

degree m, where { =3+ 3 10-!, Indeed we shall prove, more

me=1

t It is well known that this is an algebraic integer; ree o.g. Hecke (Bibliography).
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generally, that £ is a U-number of degree = if there exists a sequence
0y, &, ... Of distinet algebraic numbers, with degree n, satisfying

|E—ay| < by, (1)

where kb, denotes the height of «; and w; - 00 as j - oo, provided that,
for some r > 1, we have hy < by < B3 @)

for all sufficiently large j. Clearly £ = {'» satisfies (1) and (2) with
a]' = (p,/qj)lln, Whel'e
i
p; = 104! (1 +3 3 10—"“) , g;=3.107,
m=1 ,

and with w; = j,7 = 2; also o; has exact degree n since ¢; is not a perfect
power.

It suffices to show that if (1) and (2) hold then there are only finitely
many algebraic numbers § with degree at most n — 1 satisfying

|§~ 4| < b-@nr'r, (3)

where b denotes the height of . For then n is the least positive integer
for which there exist sequences a,,c,... and w;,w,,... as above
satisfying (1), whence £ is a U*-number of degree n and so also a
U-number of thesame degree. To verify this connexion between U- and
U*-numbers, note that if Py(x) is the minimal defining polynomial of o,
then (1) gives, for all sufficiently large 4,

|Bi(£)] € hyeitn < by,

where the implied constant depends only on £ and #, and, conversely,
if there were a sequence of polynomials P(x) (j = 1,2, ...) with degree
at most n— 1 and height at most A; such that |F(§)| < k% then the
nearest zero o; of F; to £ would satisfy (1) with o, replaced by w;/n.

Now suppose that £is an algebraic number with degree at most n— 1
such that (3) holds, and let j be the integer which, for b sufficiently
large, satisfies hj < b < hj+1; (4)
in the sequel we shall write briefly a, A, » for a;, b, ;. From (1) and
(B wohave \up| < |E~af +[E~A| < hvtb-anrr,

and, from (2) and (4), the terms on the right are at most (bh)-2»*,
provided that @ > 4n2. On the other hand, « — #is a non-zero algebraic
number with degree at most n?, and cach conjugate has absolute value
< bh, where the implied constant depends only on n; further, the
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same estimate obtains for the leading coefficient in the minimal
defining polynomial. Hence

IGC _ﬂl > (bh)—"",

and thus we have a contradiction if b is sufficiently large; the contra-
diction establishes the result.

We remark finally that the inequality |x— 8| > (ab)™ implicit in
the above argument, where a, £ denote distinet algebraic numbers
with degrees at most » and heights a, b respectively, and the implied
constant depends only on », can be much improved. Indeed, by
considering the norm of @ — # and using the result employed in § 5 on
products of conjugates of algebraic numbers, one easily obtains
|e—B| > a=%—™, where I, m denote the degrees of the fields generated
by £ over @(x) and & over @(B) respectively. A special case of the
latter inequality was discovered by A. Brauer® in 1929, but, curiously,
the full result was recorded only relatively recently.?

7. T-numbers

These exist, as we now show. To begin with, let «,, &,, ... be any non-
zero algebraic numbers and let v, v,, ... be any real numbers exceeding
1. We shall prove that there exists a sequence y,,7v,, ... of non-zero
numbers with y;/x; rational such that, if 4; denotes the height of y,,
then H, , > 2H;, where H; = Ajj, and furthermore, y;,; lies in the
interval I; consisting of all real & with

H Y < x—y; < 3HFY

in addition, we shall show that the sequence can be chosen so that, for
some numbers Aj, A, ... between 0 and 1 exclusive, we have

lv;—B] > B

for all algebraic numbers # with degree n < j distinct from y,, ..., y;,
where B = A;164»" and b denotes the height of 8. Clearly then,
Y1 Ve .. tends to a limit £ which satisfies | — 8| > B-1forall algebraic
numbers £ distinct from y,, y,, ..., and also

tHi' <E-y; < Hj?
for all j. We now take v; = (3n,), where n; denotes the degree of a,,
t J.M. 160 (1929), 70-99.

} For references and further work in this context see Michigan Math. J. 8 (1961),
149-59 (R. Gitting).



T-NUMBERS 93

and we select &;, &, ... so that the equation n; = n has infinitely many
solutions for each positive integer ». Then £ is a 7*-number and hence,
by observations similar to those recorded in §6, also a T-number.

We shall in fact construct y,, y,, ... so that four further conditions
are satisfied. Let J; be the set of all x in I; such that |x—pg]| > 2B~
for all algebraic numbers £ with degree » < j which are distinet from
Y1 ---»; and satisfy B > H;. Then we shall ensure that (i) y; is in
J;_y, (il) the measures of I, and J; satisfy |J;| > %|Z|, (iii) we have
ly;— 8| > 2B-1 for all B + y; with degree j, (iv) if y,/o; = p;/q; as a
fraction in its lowest terms, with g; > 0, then |y;—f| > ¢; for all £
with degree n < j and with 4% < g;.

To define y,, we note first that, for every large prime ¢;, there are
> ¢, numbers y of the form (p,/g,) «; in the interval (1, 2), where the
implied constant depends only on o, and these have mutual distances
> g71. Further, there are < ¢f rationals 8 with b® < ¢, and so there are
< ¢} numbers y satisfying |y — #| < g7? for at least one such f. We can
therefore select ¥, so that (iv) holds, and then, by Theorem 7.2, we can
choose A, so that the conditions concerning |y, — f| are satisfied. We
shall show in a moment that also (ii) holds in the case j = 1 if ¢, > 1.

Now suppose that y,, ..., 7;_, have already been defined to satisfy
the above conditions; we proceed to construct y;. Constants implied
by < or > will depend only on the numbers so far specified, including
possibly Ay, ...,A;_;. First let J;_, be defined like J;_, but with the
additional restriction that the heights of the g in question satisfy
b3*» < g;. Clearly the number of £#for which the latter inequality holds
is < q? and so J}_; consists of < q? intervals. Further, Jj_, includes
J;_, and so, by (ii), we have |J;_,| > 3|Z_,| > 1. It follows that, for
any large prime g;, there are > g; numbers y in J;_, of the form
(ps/9,) &, where p; is an integer < g; with (p;,¢;) = 1. Furthermore,
any such y is in fact in J;_,, for if the height of £ satisfies b3* > ¢, then
B > ¢ and thus, on noting that (¢;/p,) £ has height < ¢7b, we obtain
from Theorem 7.2

ly—8} > g7 (grb)~3» > 2B-1.

Now, as above, there are < q? numbers S satisfying the hypotheses of
(iv) and hence one can select y = y; in J;_; so that this condition is
valid. Then clearly we have |y;—g| > B-! for all B distinct from
Y1 -++» ¥j-1 With degree n < jand with B > H;_,; and indeed this holds
also for B < H;_,, for then, taking k as the least suffix > n for which
B < H, and appealing to (i) or (iii) with j = & according as k > n or
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k = n, we obtain

lvi— Bl = lyi—Bl—vi—7s| > 2B*— Hi;1 » BL.

We now use Theorem 7.2 and choose A, so that |y, — 8| > 2B~ for all
algebraic numbers f + y; with degree n = j.

It remains only to show, as in the casej = 1, that (ii) will be satisfied
if g, is sufficiently large. Now we have |¢— | > 2B~ for all # in I; and
all § + y,; with degreen < jand with H; < B < Hj.Forifb®* < ¢, then,
since H; > ¢} and v; > 1, it follows from (iv) that

le—8| = lv;—Bl—ly;—=| = ¢7*—H;' » 2H;' > 2B,
and if b3 > g; then, on appealing again to Theorem 7.2, we obtain
(o= f] > b9~ H;1 3 BE— B+ > 2871

Hence any « in the complement of J; in I; satisfies |x— 8| < 2B~ for
some £ with degree n < j and with B > H3 But the number of # with
degree n and height b is < b*, and so the complement has measure
< ZB~1b", where the sum is over all #, b with n < j and B > H;. This
is plainly < H; % < $H;1, and the required result follows.

It will be seen that the above argument allows one to construct a
T-number with w, taking any value > (3n)%. This can easily be
reduced to a bound of order »2, but at present, apparently, not readily
to one of order » as would be needed to fill the spectrum.



9
METRICAL THEORY

1. Introduction

As remarked previously, Mahler conjectured in 1932 that almost all
real numbers are S-numbers of type 1 and almost all complex numbers
are S-numbers of type 4.1 He originally proved that, certainly, they are
both of type at most 4, and 4 was reduced to 3 and § in the real and
complex cases respectively by Koksma in 1939. LeVeque improved
these in 1953 to 2 and §, and Volkmann further reduced them in 1964
to % and £. Moreover, proofs of Mahler’s conjecture in the special cases
with n = 2 and » = 3 were given by Kubilyus, Kasch and Volkmann.
Finally, in 1965, SprindZuk?* obtained a complete proof of Mahler’s
conjecture for all #, and indeed with the best possible value of w,,.

We shall establish here a refinement of SprindZuk’s result which was
derived by the author in 1966. Denoting by (k) a positive monotonic
decreasing function of the integer variable 4 > 0 such that Xy (h)
converges, we prove:

Theorem 9.1. For almost all real 6 and any positive integer n there
exust only finitely many polynomials P with degreen and integer coefficients
such that |P(6)| < (Y (h))™, where h denotes the height of P.

A similar result holds for almost all complex numbers & with the
exponent n replaced by #(n—1). It is clear from, for instance,
Minkowski’s linear forms theorem, that the assertion would not
remain valid with (k) = 1/h, and indeed it is easily verified that
almost no & would have the properties required in the case n = 1 if
ZY(h) were divergent. But it seems likely that the function (¢ (h))»
can be replaced by A—"+yr(h), and this conjecture has in fact been
established for n» < 3.

The theorem has recently been applied to evaluate the Hausdorff
dimension of certain sets; in particular, it has been employed to show
that, for any A > 1 and any positive integer =, the set of all real £ such
that, for any A’ < A, there exist infinitely many algebraic numbers £

t M.A. 106 (1982), 131-9.

1 Bibliography; thix contains references to the earlier works.
§ Proc. Roy. Soc. London, A 292 (1966), 92-104.

(95]
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with degree at most n satisfying |£—f| < b=®+YX, where b denotes
the height of £, has dimension 1/A. This generalizes a well-known
theorem of Jarnik and Besicoviteh; and it immediately implies the
result mentioned in the last chapter on the existence of S-numbers of
arbitrarily large type.t

Various avenues for further investigation are suggested by the work
here. For instance it would be of interest to obtain results analogous
to Theorem 9.1 for polynomials in several variables, and in fact some
progress in this connexion, more especially for cubic polynomials in
two unknowns, has been made by R. Slesoraitene.? In another direc-
tion, it follows from Theorem 9.1, by a classical transference principle,
that, for any € > 0 and any positive integer n, there exist, for almost
all real 0, only finitely many positive integers g such that

max g8 < g4~ (1 <j < n),

and this raises the problem of confirming the stronger proposition in
which the above inequality is replaced by

g+ 6] ...lg8"| < 1,
where the notation is that of Theorem 7.1. The problem seems quite
difficult.
2. Zeros of polynomials

We record here, for later reference, some simple inequalities con-
cerning the distances between the zeros of polynomials. Let P(x) be a
polynomial with degree » and distinet zeros &y, ..., k,,. We note first
that if 6 is any real number with |6 - &;| < |6 —«;| for all j then

[PO)] > 277 | P’ (k)] |0 — K, (1)

where P’ denotes the derivative of P. For clearly |k, — ;| < 2|60 —«,|,

and we have P'(Kky) = a(ky—kKy) ... (kKy—Kp),

where a denotes the leading coefficient of P. Similarly we obtain
|P(O)] k1= ko] = 27| P'(ky)] |6 — k4|2 (2)
Further we observe that if |6—ky| < |ky—«;| for all j> 2 then
|6 —k;] < 2|&;—k;| and so
|PO)] < 27| P'(ky)| [0—r4]. (3)
t Proc. London Math. Soc. 21 (1970), 1-11 (A. Baker and W. M. Schmidt).

1 See various papers in Litovsk. Mat. Sb. since 1969; see also Sprindiuk’s address in
Actes, Congrés international math. (1970).
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Now suppose that P(z), @(x) are polynomials with integer coeffi-
cients and degree n > 2; let their leading coefficients be a, b and their
zeros be &y, ..., &k, and A,, ..., A, respectively, all of which are supposed
to be distinet and have absolute values at most K. We shall write, for

brevity, = (K —Kg) ... (K — k),

and we shall denote by ¢ the analogous funetion of Q. Our purpose is
to prove that if |k — k,| < |k —k;| forall j > 2, if |k, —k,| < p~#, and
if also the analogous inequalities hold for @, then

|k, — Ay > min (p—3, ), (4)

where the implied constant depends only on » and K.

For the proof, we suppose that (4) does not hold and we shall obtain
a contradiction if the implied constant is sufficiently large. First we
observe that |k, — ;| > p~ forall j > 3. This is a consequence of the
fact that the discriminant of P, namely

a2 1T (k;~ &;)%,
i<j

has absolute value at least 1; for, in view of the inequality |k, —«;| < 1
valid for all 4, j, it follows that

(61~ &) (Ka—K)| > (5 2 3),
and, by hypothesis, we have
Hence, from the converse of (4), we obtain |k, —«;| > |x; — ;] and so
lieg= 2] < [i5— o] + |1 = Aa| < iy =y
for all j > 3. This gives
lan=tP(A;)| < 2 |(ky—A,) (K2~ Ay)|s (5)

and, plainly, an analogous inequality holds for Q.
We now use the fact that the absolute value of the resultant of P
and @, namely |ab|*II |k;—A,|, is at least 1. Since |[k;—A;| < 1 this

sives |ab]1 [ P(A1) Q) (ky=As) (k1= )7} > 1
and so, from (5) and its analogue for @, we obtain
[k = A1) (K3 = Ag) (Ka = A,) (K3 — A5)| > (pg) " (6)

Further, by the converso of (4) and the hypothesis |k, — ;| < p~ we
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have |k,—A;| € pt and similarly |k, —A,| < g~ Furthermore we
see that

|Ka—Ag| < [K3— Ky + [k — Ay| € max (p~t,q7d).

But this together with (6) implies the validity of (4), contrary to
supposition. The contradiction proves the assertion.

3. Null sets

Let now i be any function as in § 1 and, for any positive integer n and
any real 8, let Z(n,, 6) be the set of all polynomials P satisfying the
hypotheses of Theorem 9.1. The theorem asserts that the set #(n, )
of all 6 for which #(n,,0) contains infinitely many elements has
measure zero. We shall show here that it suffices to establish the
following modified result.

The set L(n,¥) of all 8 for which P(n,y,0) contains infinitely many
polynomials P that are (i) irreducible and (ii) have leading coefficients
which exceed the absolute values of the remaining coefficients, has measure
zero.

We begin by observing that, for any € in %(n, y), there exists, by
Lemma 1 of Chapter 8, an integer j with 0 < j < n such that infinitely
many polynomials P in P(n, ¢, 6) satisfy |P(j)| > k; and by taking
— P in place of P if necessary we can suppose that P(j) > 0. It clearly
suffices to show that the set of 6 in %(n, ) which corresponds to a
fixed integer j has measure zero, and this is equivalent to proving that
the translate, consisting of all numbers £ = 6—j, has measure zero.
Now £ satisfies |P(£+7)| < (¥(h))” for all P in P(n, ¥, 6), and P(x+j)
is a polynomial in x with height at most Ch for some C depending only
on n. Further, there is a positive monotonie decreasing function a(h)
such that Za(h) converges, a(h) = ¥ (k) and o(h)/o(Ch) < 2C?; indeed
one can take o(1) = 2¢(1) and

Mh-1)o(h) = E @k-2yh) (> 2),
k=
whence f} o(h) = 2n1t f} § ¥(h),
h=1 m=1h=1

and so Zo(h) = 22y (k). Hence £ is an element of Z%(n,¢), where
¢ = 2C%c, and infinitely many polynomials P in P(n,d,£) have
constant coefficients exceeding ch for some ¢ > 0, depending only on =.
Forany such P, the polynomial @(x) = a™ P(1/x) hasleading coefficient
exceeding ch and hence R(x) = Q(c~%x) satisfies (ii), assuming that
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¢ < 1. Moreover, R(x) has height at most ¢—"h, and also integer coeffi-
cients if ¢! is an integer. Furthermore, for any positive integer & and
any £ as above with |§| > k£, the number 5 = c£~1 satisfies

|R(@)| < (k(R))™.

It is plainly enough to prove that the set of all such  has measure zero;
for given a covering of the »’s by intervals I, I, ..., we obtain a
covering I3, I, ... of the £’s, where I consists of all cx! with « in I; and
with || > k7, and clearly we have |I}| < ¥?|I;|. Thus, on utilizing
again the above construction of o, we see that it is necessary now only
to show that the set I (n,¥) of all 6 for which P(n,y,0) contains
infinitely many polynomials which satisfy (ii) but not necessarily (i),
has measure zero.

Here we use induction. Clearly the sets & (1,¢¥) and J (1, ) are
identical and so the required result holds for » = 1. We assume that,
for any ¥, the sets Z(m, ) with m < n are null and that also #(n, ¥)
is null, and we proceed to prove that then each J(n, ) is null. For
every 6 in g (n, ), infinitely many P in P(n, ¥, 0) satisfy (ii), and if
infinitely many of these were irreducible then 6 would be in & (n, )
and the required result would follow. Hence we shall suppose that all
the P are reducible. Then each contains as a factor at least one
polynomial @ with integer coefficients and degree m < » satisfying
|@(6)| < (Y(h))"; further, infinitely many of the P correspond to a
fixed integer m and, unless 6 is algebraic, there will be infinitely many
distinet polynomials among the associated . Now appealing to
Lemma 2 of Chapter 8 and employing for a third time an averaging
construction as above, we conclude that a function ¢ exists such that
every 0 in J (n,¢) is in one at least of the sets #(m, ¢) with m < n.
Each of these isnull by the inductive hypothesisand s0.7 (n, {) isnull,
as required.

4. Intersections of intervals

We establish here a further simple measure-theoretical result needed
for the proof of Theorem 9.1.

For each positive integer &, let #(h) be a finite set of real closed
intervals, and let ¥"(&) be a subsct of (k) such thatfor each I in¥" ()
thereisaJ # Iin %(h) with |InJ| > §|I|. Furtherlet W and w be the
set of points contained in infinitely many V(k) and in infinitely many
v(h) respectively, whore V (k) is the union of the points of the intervals
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I of ¥"(h), and v(h) is that of the intervals I n J with I in ¥"(k) and
J # Iin %(h). Our purpose is to prove that if wis null then so alsois W.
We have w= N U,
l<m<wo hzm

and thus, if w is null, then, for any ¢ > 0, there is an integer m such
that, for all » > m, the union of the »(h), taken over all A with
m < kb € n, has measure at most €. Now this union consists of a finite
set of disjoint intervals and, by the definition of ¥”, we see that the
set obtained on expanding each of these intervals symmetrically about
its centre to three times its length will cover all the V(A) taken over
the same range of 4. Thus, for every n > m, the latter set has measure
at most 3¢, and, on noting that W can be expanded like w above with
V in place of v, the assertion follows.

5. Proof of main theorem

By virtue of §3, it suffices to show that every set.#(n, ¥) has measure
zero. It ig easily verified that %(1, ¢) is null and we shall assume that
&(m, ) is null for m < n; we proceed to establish the result for
m=mnz> 2.

Let 2(n,h) be the set of all polynomials with degree =, integer
coefficients and height & satisfying (i) and (ii) of §3. Further let
Ky, ..., K, be the zeros of any element P of 2(n, k), and let

7; = min |k, —K;],
where the minimum is taken over all ¢ + j. By (i) we have 7; > 0 and
from (ii) we obtain |;| < n, since clearly
| P(x) — ha™| < nhmax (1, |2|»1).
Suppose now that i is any function as in § 1, let
vy =20P' (k)| ((R) (1 <] <),
and let I; = I(P) be the interval (possibly empty) formed by the
intersection of the real axis with the closed dise in the complex plane
with centre x; and radius
p; = min {v;, (7;v;)1}.
From (1) and (2) we see that every element of &(n, ¥) is contained in

infinitely many (k) for some j, where #;(h) denotes the set of all
I(P) as P runs through the elements of 2(n, k). We proceed to prove
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that the set of points contained in infinitely many (%) has measure
zero; the proof when j§ > 1 is similar and this will therefore suffice to
establish the theorem. There is now no loss of generality in assuming
that the zeros of P are so ordered that 7, = |«; —«,|.

We divide the polynomials P in 2(n, k) into two disjoint classes,
placing P in &/(n,h) if 7, > p~t and in &(n, k) otherwise, where p is
defined as in §2, with @ = h. We denote by £ (k) and Z(h) the union
of all L,(P) as P runs through the elements of &/(n,k) and #(n,h)
respectively. Then clearly the union of (k) and Z(k) is just #,(h)
and it suffices to prove that the set " of points contained in infinitely
many X'(h) and likewise the set .2 of points contained in infinitely
many Z(h) have measure zero.

We prove first that > is null. Since (k) is positive monotonic
decreasing and Zy (k) converges, we have hy(h) - 0 as b — 00 and so
there is no loss of generality in assuming that ¥(h) < A~ for all A.
For each P in &/(n, k), let I = I(P) be the interval formed by the
intersection of the real axis with the closed disc in the complex plane
with centre &, and radius (Y'(h))~2,. Clearly I, = Tand |L| < ¢(R) |I|.
We denote by (k) the set of all I(P) and by ¥"(h) the maximal subset
of %(h) possessing the property specified in § 4. Retaining the notation
of that section, we proceed now to show that wis null. First we observe
that every 6 in I(P) satisfies

0 —ki| < (F(R) vy AP (k)| = (k=) p| ™Y (D)

provided that & is sufficiently large ; and the number on the right is at
most |k; — &,| by the definition of &/(n, k). Hence (3) holds and so

|PO)] < 27| P (k)| (Fr(R))~1 vy = 22(r(h)m .

Now if 8 were also a point of I(Q) for some @ + P in & (n, k) then the
polynomial R = P — @ would satisfy | R(6)| < 22»+1((h))"—. Further,
from (ii), we see that R has degree at most n — 1 and height at most 2A.
But, for every 6 in w, there exist infinitely many distinct R with these
properties and thus, on appealing again to the construction in §3, it
follows that w is contained in the union of sets %(m, ¢) for a suitable
function ¢, where 1 € m < n. Qur inductive hypothesis together with
the result of §3 shows that #(m, ¢) is null for each m, and hence w is
null, as required.

We conclude from § 4 that W is null and thus to complete the proof
that & is null it is necessary only to verify that the set of points in
infinitely many ¥ °(k), with those [;(’) excluded for which the corre-



102 METRICAL THEORY

sponding I is in ¥"(h), has measure zero. Now if I(P) and I(Q) are
distinct elements not contained in ¥"(h) then

[1(Pyn I(@)| < 3min(|I(P)|, |1(Q)])

This implies, as one readily verifies, that no point can be contained in
three distinet intervals J(P) not in ¥"(k). Further, all I(P) are included
in [ — 37, 3n], for we have |«;| < nand, asabove, |6 —«,| < 7, for every
@in I(P). Hence the total length of all 7(P) not in #"(h) is at most 12n.
The corresponding I,(P) have therefore total length at most 12nyr(h),
and that " is null follows immediately since Zyr(h) converges.

It remains to prove that % is null. For each positive integer %, let
%(n, k) be the union of the sets #(n,h) with 4*~! < h < 4%, and, for
each integer I, let ¥(n,k,1) be the subset of €(n, k) consisting of all
polynomials P with 4! < p < 4. Then, by (7), for each P in €(n, k, l),
L(P) has length at most

2y < 2ry )t € (4P < 270K,

where the implied constants depend only on n. Further, if I;(P) is not
empty then the imaginary part of «, is at most y,. It follows from (4),
on applying a simple box argument to the interval [—n,n], that, if
k> 1, then the number of polynomials P in € (n, k, 1) for which I,(P) is
not empty is <€ 2'+ 1. Hence the total length of all I,(P) with P in
%(n, k, 1) is € 27%(27'+ 1). But from the estimates in § 2 relating to the
discriminant of P we see that p > 1, and clearly also p <€ 47%. Thus,
for any n and k, the number of non-empty sets €(n, k,1) is € k, and,
for such sets, we have 27 € 1. We conclude that the total length of all
I(P) with P in €(n, k) is <€ k27*, and that % is null follows from the
convergence of Zk2*. This completes the proof of the theorem.
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THE EXPONENTIAL FUNCTION

1. Introduction

In a classic memoir of 1899, Borel! obtained a refinement of Hermite’s
theorem on the exponential function and thereby established the first
measure of transcendence for e, He proved that, for any positive
integer n, there are only finitely many polynomials P with integer
coefficients and degree n satisfying | P(e)| < 2~#®, where k denotes the
height of P and ¢(h) = cloglogh for some ¢ = ¢(n) > 0. Borel’s result
was much improved by Popken! in 1929; Popken showed that ¢(h)
can be replaced by n + e(h), where e(h) = ¢/loglog b with ¢ = ¢(n) > 0,
and this plainly implies that e is an S-number of type 1. Mahler$ later
derived an explicit expression for ¢ of the form ¢'n2log (n+ 1), where
now ¢’ is absolute.

In 1965, a generalization of Popken’s result similar to Theorem 7.1
was established by the author," and this will be the subject of the
present chapter.

Theorem 10.1. For any distinct, non-zero rationals 64, ...,0, and
any € > 0 there are only finitely many positive integers q such that

g+ |lget ... gef»| < 1.

The theorem plainly yields all the corollaries recorded after Theorem
7.1witha, ..., replaced by ¢, ..., e, and indeed Theorem 7.2 holds
with a replaced by ¢ for any non-zero rational §. Furthermore, in
contrast to the work of Chapter 7, the arguments here enable one to
replace € by a function e(g) tending to 0 as ¢ —> 00, namely c(log log ¢)~%
where again ¢ = ¢(n) > 0.

The proof of the theorem involves techniques similar to those intro-
duced by Siegel in his studies on the Bessel functions, which will be
discussed in the next chapter. In particular, Dirichlet’s box principle
will be employed to construct certain linear formsin ef?, ..., es= with
polynomial coefficients that vanish to a high order at the origin. Linear
forms of this kind occurred in the works of Popken and Mahler, but

t C.R. 128 (1899), 596-9. $ M.Z. 29 (1928), (25-41.
§ J.M. 166 (1982), 118 B0, || Cunadian J. Math 17 (1965), 61628,
8 | 108 | WTN
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there they were derived explicitly by means of analytic integrals.
Clearly Theorem 10.1 improves upon the Popken-Mahler theorem .
except when the polynomial P has coefficients that are, in absolute
value, nearly all equal, and then the earlier work is slightly stronger
in view of the more rapidly decreasing function e¢. Feldman' has
shown that the techniques used here furnish a function ¢(g) of order
(loglog g)~' for certain series closely related to the exponential
funection.

The arguments of this chapter do not extend easily to furnish
Theorem 10.1 for algebraic 8, ..., 6,. Some results in this context were
obtained in the original paper of Mahler, but they would seem to be
far from best possible. In fact, even in the most precise analogue of
Theorem 7.2 established to date, taking a = ¢ with § algebraic, the
exponent of B tends rapidly to —oo as the degree of & increases.!
Nevertheless, a construction similar to that employed in §2 below
yields at once a negative answer to the power series analogue of a
well-known problem of Littlewood. Littlewood asked whether, for
any real 6, ¢ and any e > 0, there exists a positive integer g such that

q1196] lgdll < e

the series @ = €!'%, ¢ = e2” provide a counter-example to the analogue,}
but the problem itself remains unsolved. And the latter recalls to mind
another outstanding question in Diophantine approximation, namely
whether every continued fraction with unbounded partial quotients is
necessarily transcendental; this too seems very difficult.

2. Fundamental polynomials

We suppose that 0,,...,0, are distinct rationals and that 0 < ¢ < 1.
Constants implied by <€ or > will depend on these quantities only.
As before, whenever we speak of the height of a polynomial it will be
understood that its coefficients are integers. We shall denote by f?
the jth derivative of a function f, or f' in the case of the first derivative.

Lemma 1. For any positive integers ry, ..., 7,, with maximum r > 1,
there exist polynomials Fy(x) (1 < i < n), not all identically 0, with
degrees at most r and heights at most r;!r", such that P (0) = 0 for

t V.M. 2 (1967), 63-72,

3 Cf. Ann. Univ. Sci. Budapest, 9 (1966), 3-14 (Luise-Charlotte Kappe).
§ Michigan Math. J. 11 (1964), 247-50,
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j<r—r,and n ©
Y Fx)efi = ¥ p,am™, 1)
i=1 m=M

where |p,,| < (r!fm!) rer+m™ gnd
M=ri+..+r,+n—1—[er].

Proof. Let L be the maximum of the absolute values of 6,, ..., 6, and
let I be the least common multiple of their denominators. We take p;;
to be 0 for all integers i, j other than the N = r,+... +7, +n pairs
given by 1 <4 < m and r—r; < j < r, and we then define p,; for these
remaining Values as integers, not all 0, satisfying

Z Z( )0’"‘717"10,—0 (0 < m < M). (2)

i=1 §=0
Such integers exist by virtue of Lemma 1 of Chapter 2, and indeed
they can be selected to have absolute values at most

H = {N(2IL)M}MIN-3),

We proceed to prove that the polynomials

P()—T‘Epa() ol (1<i<n)

have the required properties.
First we observe that, on expanding e%% as a power series in , we

obtain n @©
3 P(x) el =1l Y, a,(m!)tam,
i=1 m=0

where, for each m, I™g,, is given by the left-hand side of (2). Hence (1)
holds with p, = (r!/m!)c,,. Further we have M < N < 2nr and
N—~M > er, whence

H < {2nr(2lL)3nr)2nle < pher,
Since p;; = 0 for j < r —r, it follows that the coefficients of the F(x)
have absolute values at most

rlH

gl = r,:!H(:) < rylrer,
— ;) s
Also it is clear that

|om| < nm+1) (2ALy» H < rer+m),

and this proves the lemma.

Lemma 2. Let Py(x) (1 <1 < n,j > 1) be defined recursively by

FPu(x) = Px), Py (@) = Pyle)+0,Fx).
8-2
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If r, > 2s for all i, where s = [er]+ (n— 1)%, then the determinant A(x) of
order n with Pyx)in the ith row and jth column cannot haveazeroat x = 1
with order greater than s.

Proof. Weshall show in a moment that none of the P,(x) isidentically 0;
at first we assume this. Then each P, has a non-zero leading coefficient
P, say. Since clearly F,;(x) has degree at most » and leading coefficient
p;0i71, it follows that A(x) is a polynomial with degree at most nr and
with leading coefficient p; ... p, ¥, where ¥ is a Vandermonde deter-
minant of order n formed from the powers of the 8,. By hypothesis, the
0, are distinct and so A(z) is not identically 0.

We suppose now, as we may without loss of generality, that » = r,.
Denoting the left-hand side of (1) by ®(x), we clearly have

QU-D(z) = 3, Pyla) ene.
i=1 .

Hence A(x) remains unaltered if the first row is replaced by e~1=®U-1)(z)
withj = 1, 2, ..., n. On differentiating (1), we see that ®U)(x) has a zero
at x = 0 with order atleast M —j; and clearly Py;(x) hasazeroatx = 0
with order at least »r—r,—j + 1. Hence A(z) has a zero at x = 0 with
order at least n

M—n+1+ izz(r—r,i—n+ 1) = nr—s,

and the lemma follows since A(x) has degree at most nr.

It remains only to prove the original supposition. We suppose that
exactly k& of the polynomials Py(x) do not vanish identically and,
without loss of generality, that these are given by ¢ = 1,2, ..., k. Also
we assume, as clearly we may, that r = 7, for some ¢ with k < ¢ < n.
Now, as above, we see that the minor in A(x) formed from the first
k rows and columns is a polynomial, not identically 0, with degree at
most kr. On the other hand, on taking a linear combination of rows, it
is clear that it has a zero at « = 0 with order at least

k-1
M—Fk+1+ Y (r—-r;—k+1) 2 (k—-1)r—s+ % 7.
i=1 i=k

By virtue of the hypothesis »; > 2s for all 4, it follows that & = n, and
this completes the proof of the lemma.

Lemma 3. There are n distinct suffixes J(§) (1 < j < n) between 1 and
n+ 8 inclusive such that the determinant of order n with P, j; (x) in the
ith row and jth column does not vanish at x = 1.
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Proof. We introduce linear forms in w;, ..., w, by the equations

Z w@w, (J=1,2,..). (3)

If A;(x) is the minor in A(w) formed by omitting the sth row and jth
column then

wA@) = 3, (-1 A ) (1<i <), (4)

S

By Lemma 2, there is an integer ¢ < s such that A9(1) 3= 0 and we
suppose that ¢ is the least such non-negative integer. Now regarding
the w; as differentiable functions of « and differentiating (4) ¢ times,
replacing the w; occurring at each stage by w;0, (as we may since the
resulting equations hold identically in the w; and w;) we obtain

wi{ é}_(;)ﬁg—f A®D (x)} =:§1‘mmj(x) (1<i<n),

where the Fj;(x) are polynomials given by linear combinations of the
Ay (x) and their derivatives. Hence the linear forms defined by (3)
with « =1 and with 1 <j < n+1, include a set of #» linearly inde-
pendent forms, and the lemma follows with J(j) (1 < j < n) given by
the associated suffixes.

Lemma 4. There are iniegers q;; (1 < 1, j < n), forming a non-zero
determinant, such that |q;;| < r;'ri and

n n -1
Y q;€%| < r!r‘""( II ri!) . (5)
i=1 i=1

Proof. In fact the integers g;; = I"+2F, ;;(1) have the required pro-
perties. Indeed the first assertion follows from Lemma 3 and the
second from the obvious upper estimate r;! (r + L) r for the absolute
values of the coefficients of F;. Further, with the notation of Lemma 2,
the sum on the left of (5) is given by I»+s®J7()-1(1), and, on differ-
entiating (1) A € n 48— 1 times, we obtain

|OW(1)] < rirer 3 pom ((m—h)l)L.
me=M

But the sum on the right multiplied by (M = A)! is clearly at most
err*M and we have

(M=h 2 (ry+...+7r,—28)! > (mr)~22(r,+... +7,)!.
Sinee M <} nr and & < }er, thia gives (5).
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3. Proof of main theorem

The proof can now be completed readily by means of the Geometry of
Numbers.t Let 64, ...,0, be distinct non-zero rationals and suppose
that £ > 0. Constants implied by <€ or > will depend on these
quantities only. For brevity we put k = n+ 1, and we signify by A,
the vector (ef, ..., e%, 1) in Rk, Further we signify by A; (1 <j < n)
the jth row of the unit matrix of order k. We proceed to show that, for
any numbers g, ...,y with gy ... 4 = 1 and g; > 1 (1 <j < k), the
first minimum A, of the parallelepiped |A;x| < p; (1 < j < k) exceeds
ptif u; < pforalljand > 1. .

In fact it suffices to show that the last minimum A,, of the parallel-
epiped is < pfi", for we have A;... A, > 1 and so A; > A;". We shall
apply Lemma 4 with »n replaced by k and with 8, = 0. We take » = r,,
to be the least positive integer for which 4 < »!7—%" and we then take
715 ..+, Ty Y0 be the integers satisfying

(r;— 1) < pyrte < 7l

Clearly r is the maximum of 7y, ...,7, and we have » > 1 and r; > 4er
for all ¢; in particular, the hypothesis of Lemma 2 is satisfied. Further,
from Stirling’s formula we see that

p> (r—1)1rter > il
and so, by Lemma 4,

|95;] < par®rtt < pugp2®e.
Further, the right-hand side of (5) is at most

1Ty eon o) TH < P 2%,
and since the determinant of the g, is not 0, it follows that A, < p20.
This gives A; > u~% if € is sufficiently small, as required.

Finally, we apply Lemma 8 of Chapter 7 with [=n=Fk—1.
Denoting by a; (1 < j < k) the vectors defined at the beginning of § 10
of Chapter 7 with ¢% in place of a;, we conclude that the first minimum
v, of the parallelepiped |a;x| < #;1 (1 < j < k) satisfies

V1 > Al"'Al = Ai

and so v; > u~%. Hence the main proposition of §10 holds, and
Theorem 10.1 now follows by the argument immediately succeeding.

1 For an alternative argument see the author’s meroir in Canadian J. Math. 17
(19865).
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THE SIEGEL-SHIDLOVSKY
THEOREMS

1. Introduction

In 1929. Siegel’ obtained a general method for establishing the
algebraic independence of the values of a certain class of power series
satisfying systems of linear differential equations. Siegel called the
power series in question E-functions. By this he meant series of the
form ©

> a,an!,

n=0
with ay,a,,... elements of an algebraic number field such that, for
some sequence bg,b,,... of positive integers and for any e > 0,
b,ag ..., b,a, and b, are all algebraic integers with size <€ n°®, where
the implied constant depends only on €; here the size denotes, as in
Chapter 4, the maximum of the absolute values of the conjugates.
It is clear that the exponential function is an E-function, and indeed
so is the normalized Bessel function

0 1y (1ly\2n
K (x) = T(A+1) (F2)*(2) = Eo oy (()1 +13) (fw())l +n)

for all rational values of A other than the negative integers. More
generally, any hypergeometric function

®, [og,n]...[0q %] on
n=0 [ﬂl’ n] [ﬂms n]
is an E-function, where k = m—1 > 0,
[y.n] =y(y+1)... (v +n-1),
and the o’s and £’s are rationals other than negative integers. The
latter assertion follows in fact from the observation that, for any
rational a = p/q, the integer ¢*[c, n] divides n!v, where » denotes the
least common multiple of all the positive integers up to
m = (|p| +|g|)n;
and from the prime-number theorem we have v < ¢™ for some absolute

t Abh. Prevas, Akad. Wiaa. 1029, No. 1.
[ 109 |
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constant ¢. Furthermore, it is readily verified that sums, products,
derivatives and integrals of E-functions are again E-functions.
Siegel’s work related to differential equations of the first and second
orders only, and it was an outstanding question for many years to
devise a means of extending the arguments to higher order equations.
The problem was solved by Shidlovsky'in 1954 and many notable
applications have followed.? The basic result concerns E-functions
E,\(x), ..., B, (x) satisfying a system of homogeneous linear differential

equations , =n .
Yi =j_21 fy@)y; (1 <i<n), (1)

where the f;; are rational functions of «, and the coefficients of all the
E’s and f’s are supposed to be elements of an algebraic number field K.
We have then

Theorem 11.1. If E,(x),...,E, (x) are algebraically independent
over K(x) then, for any non-zero algebraic number a distinct from the
poles of the f;, Ey(x), ..., B, (a) are algebraically independent.

The theorem can easily be extended to yield an assertion to the
effect that the maximum number of algebraically independent
elements among ¥, (x), ..., F,(z) is the same as that among

El(a)’ ey En(a):

and moreover there is no difficulty in generalizing the latter result to
inhomogeneous equations where an additional rational function is
present on the right of (1). As an immediate application of Theorem
11.1, we see that if A is rational, but not a negative integer or half an
odd integer, then K,(a) and Kj(a) are algebraically independent for
every non-zero algebraic number «; for it is well known® that K,(x)
and K;(x) are algebraically independent over @(x). This further
implies, for example, that the continued fraction with partial quotients
1,2,8, ... is transcendental; for Jy(y/(— 4x)) [= Ko(y/(—4x))] satisfies
the differential equation zy”+y' = y, and the continued fraction in
_ question is given by y/y’ evaluated at x = 1. Oleinikov" has obtained
some similar theorems for third order linear differential equations;
for instance he has shown that if

% (@3

P = 2 el e

+ I.A.N. 23 (1959), 35-66.
1 Cf. the survey of Feldman and 8hidlovsky (Bibliography).
§ Cf. Siegel (Bibliography). || D.A.N. 166 (1966), 540-3.
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where A, g are rationals such that none of A+u, A—2u, u— 22 are
integers, then F(x), F'(x), F'"(x) satisfy the hypothesis of Theorem 11.1,
whence F(a), F'(a), F"(«) are algebraically independent for every non-
zero algebraic number «. And Shidlovsky' has proved a striking
theorem to the effect that if

Oule) = 3 +vf(ml),

then, for any non-zero algebraic « and any r, the numbers ®{P(«), with
1<l<k 1<k<r, are algebraically independent. Plainly also
Theorem 11.1 includes Lindemann’s theorem.

2. Basic construction

The proof of Theorem 11.1 follows closely the arguments of the
preceding chapter, but it is no longer a simple matter to confirm that
A(x) does not vanish identically. The verification, which is Shidlovsky’s
major discovery in the subject, will be given in Lemma 2 below.

We shall signify by E,(z), ..., E,(x) E-functions as above, linearly
independent over K (x) and we shall suppose that 0 < € < 1. Constants
implied by < or > will depend on the coefficients in the E’s, f’s and
on ¢ only. By f(x) we signify a polynomial, not identically 0, with
coefficients in K, such that ff;; is a polynomial for all f,; in (1).

Lemma 1. For any integer r > 1, there are polynomials
P(®) (1<i<m),

not all identically 0, with degrees at most r and algebraic integer coefficients
in K with sizes at most (r!)1+¢, such that

2 B@) E@) = 3 ppa™, (2)
=1 m=M
where |p,,| < rl(m!)~1+ and
M =n(r+1)—~1-—[er].
Proof. Let a,; be the coefficient of 29/j! in E(x) and let b,g, by, ... be the

sequence of integers associated with E,; as in §1. By Lemma 1 of
Chapter 6, there exist algebraicintegersp,; (1 <t <%, 0<j < r)inkK,

t Trudy Moskov. 18 (1068), 55-64.



112 THE SIEGEL-SHIDLOVSKY THEOREMS
not all 0, such that

n  min (r, m) m

ETE () amspa=0 @<m<m), ®)
and indeed they can be selected to have sizes at most NNMIWV-2),
where N =n(r+1) and & = (¢/4n)?; for, on multiplying (3) by
bim -+ Dums the coefficients become algebraic integers in K with sizes
< 2MYHM a3 is clear on taking 8/(2n) in place of € in the defining
property of the b’s. We conclude, as in the proof of Lemma 1 of
Chapter 10, that the polynomials

j=0

B =1 3 o) (1<i<n)
j=0 .
have the asserted properties. In fact (2) plainly holds with

Pm = (rjm1) G,

where o, denotes the left-hand side of (3), and since M < N < 2nrand
N—M > er, we see that the p; have sizes at most 7, whence
|| < (m!) for m > M, as required.

Lemma 2. Let Py(x) (1 < ¢ < n,j > 1) be defined recursively by

n
B,=F, P, =fP;Zj+fh§1fhiPhj-

Then the determinant A(x) of order n with Py(x) in the ith row and jth
column is not identically 0.

Proof. Suppose, on the contrary, that A(x) vanishes identically. Let k&
be the integer such that the first k columns of A(x) are linearly inde-
pendent over K(z) but the (k+ 1)th column is linearly dependent on
these. We signify by Q the matrix formed by the first ¥ columns of
A(z), and by R and S the matrices formed from the first k rows of Q
and last n — k rows respectively. We assume, as clearly we may, that
the notation is such that R is non-singular, and we proceed to prove
that the degrees of the numerators and denominators of the rational
function elements of SR~ are < 1, where in fact the implied constant
depends only on the f’s. This will suffice to establish the lemma; for
denoting by L the row vector with jth element

n
Lj=':le>ijE1' (1<j<k),
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and putting A= (¥,,...,E,), B=(E,.,...5,),
we have L = AR + BS whence
LR1=A+BSR. (4)

But L, satisfies the differential equation L; , = fL;and so each element
of L hasazeroatx = O with order atleast M —n. Further, each element
of R can be expressed as arational funetion in K (x) with denominator
det R, and since the latter is a polynomial with degree at most &r +c,
where ¢ € 1, it follows that each element of LR~ has a zero at x = 0
with order at least M — kr —n--¢. On the other hand, the vector on the
right of (4) cannot vanish identically in view of the assumed linear
independence of £, ..., E,, and the order of the zeros of its elements
at ¢ = 0, if any, are bounded independently of the coefficients of the
elements of SR, and so, in particular, of r. Now k < n, and so M — kr
tends to infinity with r; hence we have a contradiction if r is suffi-
ciently large.

To prove the assertion concerning SR—1, we observe first that there
is a square matrix F of order %, with elements in K(z), such that, for
any solution y of (1), the vector Y = yQ satisfies the differential
equation Y’ = YF. Indeed if ¥, denotes the jth element of Y, then
Y, =fY;forallj < k and, by the definition of %, f Y}, is expressible
as a linear combination of ¥;, ...,Y; with coefficients in K (x). Let now
W, ..., W, be power series solutions of (1) linearly independent over K
and let W be the square matrix of order = with jth row w;. Then each
row of WQ is a solution of Y’ = YF; but this has at most k solutions
linearly independent over K and thus there exists an n — k by » matrix
M with coefficients in K and rank n-—#% satisfying MWQ = 0.
Denoting by U and V the matrices formed from the first £ columns of
MW and the last #» — k columns respectively, we have UR+VS = 0.
Since R is non-singular and MW has rank n —k it follows that V is
non-singular and so SR~ = — V-1U. Clearly the elements of V-1U are
rational functions in the elements of W with coefficients in K and with
the degrees of the numerators and denominators bounded inde-
pendently of r. Hence they can be expressed as quotients of linear
forms in certain monomials in the elements of W, linearly independent
over K(x), the coefficients in the linear forms being rational functions
in K (x)for which again the degrees of the numerators and denominators
are bounded independently of r. Since the elements of SR~ and s0 also
of V-1U are in fact in K(x), they must be given by quotients of such
coefficients, and the assertion follows.
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3. Further lemmas

We now obtain analogues of Lemmas 3 and 4 of Chapter 10. The
arguments here will follow closely their earlier counterparts and so we
shall be relatively brief.

By a we shall signify an element of K with «f(x) & 0. By ¢, ¢, ...
we denote positive numbers which may depend on a,¢ and the
coefficients in the E’s and f’s only.

Lemma 3. There are distinct suffives J(§) (1 < j < n) not exceeding
er+c, such that the determinant with P; y;(x) in the ith row and jth
column does not vanish at x = o.

Proof. We begin by noting that A(x) remains unaltered if the first
row is replaced by E71L; with § = 1,2, ...,n, where L; is defined as in
the proof of Lemma 2. Hence A(x) has a zero at x = 0 with order at
least M — c,, and since it is a polynomial with degree at most nr + ¢,
it follows that a non-negative integer ¢ exists, not exceeding

nr+cg— (M —c,) < €r+cy,

such that A®(a) + 0; we suppose that ¢ is chosen minimally.

We now introduce linear forms in w,, ..., w,, by (3) of Chapter 10. On
applying the operator fd/dx to (4) of that chapter ¢ times, replacing
w; oceurring at each stage by the right-hand side of (1) with y; = w;,
we obtain et
wy(f (@)t AO(ex) =jZIW}1’},-(0¢) (I<i<n),

where the F;; denote polynomials in z given by linear combinations of
the f’s, A’s and their derivatives. Hence the linear forms

W, (1<j<n+i)
with = a include a set of n linearly independent forms and the

lemma follows with J(j) given by the associated suffixes.

Lemma 4. There are algebraic integers q;; (1 < 4,5 < n) in K with
sizes at most (r1)1+1% forming a non-zero determinant and satisfying

< (Fl)yHesen (1< <m). ®)

n
2 9l (@)
f=1

Proof. Let I be a positive integer such that la and the coefficients in
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If and all Iff;; are algebraic integers. We proceed to prove that the
numbers 9 = er"H'l)J(j)Pi,J(j)(O‘) (1<4,5<mn),

where m denotes the maximum of the degrees of the ff;; and f, have the
required properties. First it is clear that I7P; has algebraic integer
coefficients and degree at most 7 +mj. Thus the ¢’s arealgebraic integers
and, by Lemma 3, they form a non-zero determinant. Further, it is
easily verified by induction that the sizes of the coefficients of [/F,; are
at most (7 +my)¥ c(r!)1+¢, and since the J(5) do not exceed €r + ¢,, this
gives the required estimate for the sizes of the ¢’s.

It remains to prove (5). Denoting by ®(x) the left-hand side of (2),
it is clear that the sum on the left of (5) is given, apart from a factor
Ir+#mtDJ by (fd/dx)T ! @ evaluated at = a, where J = J(j). But,
again by induction, we see that this is a linear form in the ®®(«), where
h=0,1,...,J—1, having coefficients with absolute values at most
(cg/)*’. Hence it suffices to prove that

|OW(a)| < (rl)-ntlt8en (0 < B < J).

Now from Lemma 1 we obtain
|0 )| < 7! X (ml)e((m—h)1)~|a|m?,
m=M
and the sum on the right is at most
BS (ml)-tregm|almh < Bl cHM (M),
m=M

Since b < er+c¢, and M < 2nr we have A! < (r!)% and
M > (2nr)—e (r!)" > (T!)n——Ss.

The required estimate follows at once.

4. Proof of main theorem

Suppose that E,(«), ..., £, («) are algebraically dependent. Then they
satisfy an equation P(¥,,...,E,) = 0, where P is a polynomial with
algebraic coeflicients, not all 0. We shall denote by ¢ the degree of P,
and we shall assume, as we may without loss of generality, that the
coefficients in P are algebraic integers in K. The degree of K will be
denoted by d, and we shall suppose that 0 < ¢ < 1. Further we shall
signify by m an integer such that the binomial coefficients

() ()

n



116 THE SIEGEL-SHIDLOVSKY THEOREMS

satisfy k—1 < I/(2d); the latter inequality certainly holds for all
sufficiently large m since k£ and [ are asymptotic to m"/n! as m — co,
as is easily seen by expressing them as polynomials in m with degree .
In the sequel, constants implied by < or > will depend on «, €, m and
the coefficients in the E’s, f’s and P only.

Let now &, ..., 8, be the E-functions Ef: ... Eir, wherej,, ..., j, run
through all non-negative integers with j,+...+j, <m+c. Then
clearly &), ..., & satisfy a further system of linear differential equations
of the form (1), where the new coefficients are given by linear com-
binations of the f’s; furthermore, &, ..., &), are linearly independent
over K(x) by virtue of the hypothesis regarding the algebraic in-
dependence of Ey(x), ..., E,(x). We conclude from § 2 and § 3 that, for
any integer r > 1, there exist algebraic integers ¢;; (1 <4,j < k) in
K possessing the properties cited in Lemma 4 with &, ..., & in place
of Ey,...,E,. For each set of non-negative integers j,,...,j, with
Jit .. +jn < m we write

A [
E{l “es E;‘nP(El, ey E’IL) =i_zlpijéai’

where the p,; are either coefficients in P or 0, and j = j(jy, ..., J,) takes
the values 1,2,...,I. Then on the right we have I linear forms in
&y ..., & linearly independent over K, all of which vanish at z = «.
Since the determinant of the g;; is not 0, it follows that there exist k —1

of the forms k )
o, =i§1qwé’i (1<j<k),

which together with the latter make up a linearly independent set;
without loss of generality we can suppose that they are given by
Dy, 4, ..., D;. We shall suppose also, as clearly we may, that &,(«) + 0.

We now compare estimates for the determinant D of order & with
p,; in the ith row and jth column for j <7 and ¢, in that position for
J > 1. Plainly D is a non-zero algebraic integer in K, and, since p;; < 1,
it has size < (r!)A+8&-); hence

|D| > (r1)-Q+18000d 5 (pl)-Q+16002,
On the other hand, D is unaltered if the first row is replaced by 0

for j < I and by £71Y(a) @, for j > I. Further, by Lemma 4, the latter
elements are < (r!)~*+1+16ck; thug

I DI < (T!)(1+16s)(k-l—1)—k+1+msk < (,.g)-t+szek.

But & < 31 and so, if ¢ < 1}3 and r is sufficiently large, we have a con-
tradiction. This proves the theorem.
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Subsequent to the fundamental discovery of Shidlovsky, researches
in this field have largely centred on establishing the function-theoretic
hypotheses of Theorem 11.1 and its extensions for particular classes of
E-functions, and, as indicated in § 1, this has in fact been accomplished
in many striking cases. Studies have also been carried out in connexion
with obtaining positive lower bounds for expressions of the type
P(E,,...,E,) as above, and in fact an estimate of the form CAh— has
been established, where A denotes the maximum of the sizes of the
coefficients of P and C, ¢ are positive numbers which do not depend
on h; but ¢ here increases rapidly with n.? The main outstanding
problem in the subject is to generalize the theory to wider classes of
analytic functions than F-functions, and any progress here would be
of much interest.

1 Cf. Lang (Bibliography, first work).
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1. Introduction

Few theorems have been established to date on algebraic, as opposed
tolinear, independence of transcendental numbers. Indeed, apart from
the results on E-functions discussed in the last chapter, which in fact
follow at once from their linear analogues, and the examples men-
tioned in Chapter 8 that arise from the properties of Mahler’s classi-
fication, the only work in this context of a general nature is based on
studies of Gelfond' carried out in 1949. Recently a number of authors
have obtained important improvements in this connexion, and these
latest developments will be the theme of the present chapter.

The essential character of the results is well-illustrated by:

Theorem 12.1. If both &, &, & and #,, 34, 95 are linearly inde-
pendent over the rationals, then two at least of the numbers

£, €M (1<4,7<3)

are algebraically independent.

Gelfond proved the theorem originally subject to certain supple-
mentary conditions, and the formulation here is due to Tijdeman.}
As an immediate consequence one sees that if « is an algebraicnumber
other than 0 or 1and #is a cubic irrational then af, a#® are algebraically
independent; this follows in fact on taking £; = /! and #; = £;loga.
Tijdeman also derived two variants of Theorem 12.1; he proved that if
&1s &2y &3, &4 and 7y, 9, are linearly independent over the rationals, then
two at least of £, ¢fi% are algebraically independent, and moreover
that if §,, £,, &; and 7, 9, are linearly independent over the rationals,
then two at least of £, 7;, ¢5i%j are algebraically independent. These
results include some earlier theorems of Smelev.$

Very recently, Brownawell' and Waldsechmidt" succeeded inde-
pendently in obtaining a new version of the latter result which sufficed
to solve a well-known problem of Schneider. They proved:

t Bibliography t I.M. 33 (1971), 146-62.

§ Mat. Zametki, 3 (1968), 51-8; 4 (1068), 525-32,
| J. Number Th. 6 (1974), 11-31. o J. Number Th. 5 (1973), 191-202.
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Theorem 12.2. If both £, &, and 94, 11, are linearly independent over
the rationals and if €517: and 5" are algebraic, then two at least of &;, 1;, €57
are algebraically independent.

This implies, more especially, that if &,, £, and 7, 7, are linearly
independent over the rationals then at least two different numbers
amongst £, 9;, é57 are transcendental. It follows at once, on taking
&L =171 = 1,& = 7, = e, that one at least of e® and ¢** is transcendental.
Furthermore, from Theorem 12.2, one sees, for instance, that at least
one of ¢!°¢ > and a @°% @ i transcendental for any algebraic number «
other than 0 or 1. These results represent the nearest approach we
have to date towards a confirmation of the transcendence of numbers
of the type logw and ™.
In another direction, Lang’ has proved:

Theorem 12.3. If £, &,, &; and 9y, 5, are linearly independent over
the rationals then one at least of the numbers e&j is transcendental.

Surprisingly, the demonstration of Theorem 12.3 is much simpler
than that of Theorems 12.1 and 12.2, and yet the result admits several
notable corollaries. In particular, it follows that, for any algebraic
number a, not 0 or 1, and any transcendental 8, one at least of o#, af’,
of is transcendental; and in fact this result holds for any irrational gin
view of the Gelfond-Schneider theorem. As a further example, the
theorem plainly shows that for any real irrational 8, the function x#
cannot assume algebraic values at more than two consecutive
integral values of x > 2. More general results of this nature, involving,
for instance, the Weierstrass g-function, were obtained by Rama-
chandra,* who apparently discovered Theorem 12.3 independently.
The theorem also throws some light on the problem raised by Schneider
as to the untenability of the equation

logalogf =logy logd

in algebraicnumbers a, g, v, 8, having logarithms linearly independent
over the rationals; it shows in fact that, given «, v, there cannot be
two solutions g, 8 such that all six logarithms are linearly independent.
The problem is, of course, only a special case of the wider open question
as to a verification of the algebraic independence of the logarithms of
algebraic numbers.

We remark finally that most of our expectations in connexion with

t Bibliography. t Acta Arith. 14 (1068), 65- 88,
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the transcendence properties of the exponential and logarithmic
functions are covered by a general conjecture, attributed to Schanuel,
tothe effect that if £, ..., £, are linearly independent over the rationals,
then the transcendence degree of the field generated by £,,...,£,,
¢, ..., en over the rationals is at least n. The conjecture includes
Theorems 1.4 and 2.1, and moreover it implies the algebraic inde-
pendence of e and 77. The power series analogue has been proved by Ax.7

2. Exponential polynomials

Our object here is to establish a theorem of Tijdeman? on the zeros of

functions of the form
E-1 L
P = % T fbDken.
k=0 1=1

We shall assume that o, ..., o, are complex numbers with absolute
values at most 8, and that the f’s are arbitrary complex numbers for
which F does not vanish identically. Constants implied by <€ will be
absolute. We prove:

Lemma 1. The number of zeros of F in any closed disc, with radius R,
counted with multiplicities, s € KL+ RS.

Tijdeman actually obtained the estimate 3K L + 4BS, but the constants
are not important for our purpose here. The main interest of the result
lies in the fact that, in contrast to all previous theorems of its kind,
there is no dependence on the differences between the ¢’s, and it is
this strengthening that leads to the improvements in Gelfond’s
results mentioned earlier.

To commence the proof, let C be the circle centre the origin® with
radius R, and let M(R) be the maximum of |F| on C. Further, let

W) = (2= 0y) ... (2—wy),

where w,, ..., w, run through the zeros of F, taken with multiplicities,
within and on C. Then F/W is regular within and on any concentric
circle with larger radius, and so, by the maximum-modulus principle,

|W(w)| M(R) < |W(u)| M(4R),
where u, v are some numbers with |u| = R and |v| = 4R. Now clearly
|W(u)| < (2R):, |W(v)| = 3R),
t Ann. Math. 93 (1971), 252-68.

t 1.M. 33 (1971), 1-1.
§ Plainly, this choice involves no Joss of genorality.
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and thus h < log (M(4R)/ M (R)).
It remains therefore to show that the number on the right is
< KL+ RS.

Let thesequence gy, ..., 0y, ..., 0, ..., 6, of N = KLnumbers, where
each ¢ isrepeated K times, be written as 9y, ..., 7y. By Newton’s inter-
polation formula we have, for any w, z,

N
e = Y a, P (w),

n=0
_ 1 e (E—Tnyr\™
ond = B () %

T" denoting a circle with centre the origin, described in the positive

sense, including the #’s and w, and &, = 0 if n < N, dy = 1. Clearly

a,, is independent of w for » < IV and a, is an integral function of w.

We put N-1 N-1

P(w) = 3 a’nPn(w) = X Do W
n=0 n=0

and then it is readily verified that
E-1 L N-1
FE)= 35Sk ) POG) = 3, FO0).

We proceed now to employ the latter formula to obtain an upper
bound for | F|.
By Cauchy’s theorem we have

' F()dE
Q) =
F (0) 27.’.7: o §n+1 4
and thus | F™(0)| < n! M(R)/R™.
N-1
This gives |F(z)] < M(R) ¥ n!|p,|/R™
n=0

To estimate the latter sum, let

L 1 ezl d¢
i e @)

where @, (w) = (w—8)" and I" denotes a cirele as above including S.
On comparing the cocefticients in (£,(€)) ' and (@,(€)) * when these are
92
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expressed as series in decreasing powers of {, we obtain |a,| < b,, for
all » < N. But plainly b, = €5 |2|nfn! '

and so, in view of the formula

N-1
n!pn = % a’rpf('m (0),

r=mn

we have
N-1 [y N-1
n! |pn| <nty ( )Sr—nbr = eds 3 lzlrSr—n/(,,._n)! < Izln e2lels
r=n n r=n
N-1
whence |F(z)| < M(R)e¥5 3, (|2|/RB)".
n=0

On taking |z| = 4R, we conclude that
M(4R) < M(R) SRS 4V,

and the lemma follows at once.

3. Heights

We shall require a more explicit version of Lemma 2 of Chapter 8. The
result is due to Gelfond, who in fact obtained the proposition in a
generalized form relating to polynomials in several variables.

Lemma 2. If P(x) is a polynomial with degree n and height h, and

if P = P, B,... B, where Fj(x) is a polynomial with height h,;, then
b > emhihy... by,

We assume without loss of generality that P(0) + 0. For any zero p
of P and any complex number z with |z| = 1, let w be the projection of
p on the line through z and —p/|p|, taking w = z if z = + p/|p|. Then,
by simple geometry,

lz=pl = |w—p| = $(1+|pl) [2—pllpl]-
Thus, if py, ..., p,, are all the zeros of P, then
|P(z)| = 27", ... M, R(z),

where M; denotes the maximum of P, on the unit circle and

R@z) = TI lz2—p;l|p;l1-
i=1
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Now for any polynomial

Q@) = o+ @12+ ... + 2™
1 m

we have f |@e2#)|2dp = X |g;|>
0 i=0

Hence taking @ = R and noting that R has leading coefficient 1 and
constant coefficient with absolute value 1, we obtain

[ 1pemapag > pv, ..ty

But, on taking @ = P, we see that the number on the left is at most
2nh?, and clearly also

1
243 > [ BElag > 1,
0

Since e > n32%, this proves the lemma.

We shall require also a lemma closely related to the inequality
|ee = B| > a~"b~™ mentioned in §6 of Chapter 8. Again we shall adopt
the convention that when one refers to the height of a polynomial it is
implied that the coefficients are rational integers, not all 0.

Lemma 3. If P(x), Pyx) are polynomials with degrees n,, ny and
heights h,, h, respectively and if By, P, have no common factor then, for
any complex number z,

max (| P,(2)|, | Byz)]) = (g + ng)~datnet D ponafym,

The proof depends on the observation that since P,, P, have no
common factor, their resultant B is not 0. Now E can be expressed
as the familiar Sylvester determinant of order n,+n, formed by
eliminating « from the equations

2tP(x) =0 (0 <7 < ny), I Py(x) =0 (0<j < my).

Thus R is a rational integer and so |R| > 1. On the other hand, R is
unaltered if one replaces the element in the first column and ¢th row by
Z1P,(2) for i < ny and by zi-~1P,(z) for ¢ > n,. Hence, if || < 1, the
lemma, follows from the upper cstimates for the cofactors of these
elements furnished by Hadamard’s inequality. If |z| > 1 one argues
similarly, replacing now the elements in the last column by numbers
as above multiplicd by z-"-m1,
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4. Algebraic criterion

We now establish a lemma giving a sufficient condition for a number
to be algebraic; it was derived in its original form by Gelfond and later
sharpened by Brownawell and Waldschmidt. It shows that, in a sense,
a number cannot be too well approximated by algebraic numbers
unless it is itself algebraic and all the terms in the sequence beyond a
certain point are equal. We shall actually prove the proposition in a
form relating to polynomial sequences since this is more useful for
applications.

First we need a preliminary lemma. Let P(x) be a polynomial with
degree n and height A, and let z be any complex number.

Lemma 4. If |P(z)| < 1 then P has a factor @, a power of an
irreducible polynomial with integer coefficients, such that

|Q(z)| < |P(2)| exp (8n(n +logh)).
We write P as a product P, ... P, of powers of distinet irreducible
polynomials and, for brevity, we put p; = | F(z)|. Then, by hypothesis,
.. 0, < 1 and so there exists a suffix [, possibly 1 or %, such that
Pre-PraZ PP Pro-Pr S Pria--- Poe

Now P, ... B_, and F... B, have degrees at most », no common factor
and, in view of Lemma 2, heights at most e*h. Hence from Lemma 3
and the first inequality above we see that

Py-.. Py 2 Xp(—4n(n +logh)).

Similarly, by virtue of the second inequality above, this estimate
obtains also for p; ;... p;. Thus we have

Dy < Py Pr®XP (8n(n+logh)),
and the assertion follows with @ = F.

Lemma 5. If w is a transcendental number and if Byx) (j=1,2,...)
18 a sequence of polynomials with degrees and heights at most n; and h;
respectively such that

n; < g < ny, logh; <logh,,; <logh,,
then, for some infinite sequence of values of j,

log |F(w)| > —mny(n;+logh,).
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Here the implied constants are again absolute. For the proof we
agsume that the latter inequality does not hold for j sufficiently large,
and we derive a contradiction if the implied constant is large enough.
By Lemma 4, P, has a factor @, a power of an irreducible polynomial,
such that log |@;(w)| < —ny(n; +1oghy),
and, by Lemma 2, @, has height at most ™ ;. It follows from Lemma 3
that, for all sufficiently large j, @; is a power of some irreducible
polynomial @, say, independent of j; for if @; and @, have no common
factor then

max (|Q;(0)], |@a®)]) > e~4™r1hy "k,

and, in view of the hypotheses concerning #;_, and &, ,, this plainly
contradicts either the previous inequality or its analogue with j
replaced by j + 1. Since obviously @, is at most the n;th power of @, we

obtain log |Q(w)| <€ — (r; +1oghy),

and since also #; —> 0o as j — oo, it follows that Q(w) = 0. But this
contradicts the hypothesis that w is transcendental.

5. Main arguments

The proofs of Theorems 12.1, 12.2 and 12.3 are similar to demonstra-
tions of earlier chapters and it will suffice therefore to describe them in
outline.

For Theorem 12.1, we assume that the field generated by the £; and
€57 (1 < 4,5 < 3) over the rationals @ has transcendence degree 1 and
we derive a contradiction. The field is then generated by a tran-
scendental number « together with a number Q algebraic over Q(w);
and one can assume that Q is integral over @(w). It will be enough to
treat here the case when the £; and &7 are integral over Q(w); the
general result follows similarly on introducing appropriate denomi-
nators. Constants implied by <€ and >, and by ¢,,¢,, ... will depend
on the £’s, #’s and w, Q only.

One begins by constructing for any integer k> 1, an auxiliary
function I I
Pey= 3 ... T Ay, ..., Ag) wroetibitAsbst sl

-0 Ay 0
satisfying OU)(g) = 0 (0 < j < k) for each

=l g+l (0 <Uylly<om),
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where
m = [k(logk)?), L,=[klogk], L,= L,= L;= L= [k(logk)}],

and the p(A, ...,A;) are rational integers, not all 0, with absolute
values at most k%*. Such a construction is possible, for clearly ®Y)(y)
can be expressed as a linear form in the p’s with coefficients given by
polynomials in w, Q; the latter have degrees € L,in w, € 1in Q and
heights at most k%*. Thus one has to solve M < m3kL,linear equations
in » L3L, > 2M unknowns, and Lemma 1 of Chapter 2 is therefore
applicable.

Let now C, I" be the circles centre the origin described in the positive
sense with radii £ and k% respectively. Then, for any z on T,

o= o, () 0

where 4(z) denotes the monic polynomial with m? zeros . Hence we
see that

log |®(2)| € —mklogk,

and since, by Cauchy’s theorem,

. J! D(2)
DU)(7y) = 3 et z,
it follows that, if j < k(log k)%, then the same estimate obtains with
®(2) replaced by ®¥(). But, by Lemma 1, ® has < L3 zeros within
and on C, and so ®9)(y) + 0 for some 7 and some j as above. Further,
@l)(p) is a polynomial in w, Q with rational integer coefficients, and, on
taking the product of its conjugates over @(w), we derive a polynomial
P(x) with degree n and height & satisfying

n< klogk, logh < k(logk)t,
log |P(w)| < —m3klogh < — k? (log k¥,

As & increases we obtain a sequence of such polynomials P and,
plainly, this contradicts Lemma 5. The contradiction proves the
theorem.

The proof of Theorem 12.2 is similar. Under analogous initial
assumptions, one constructs, for any integer k> 1, an auxiliary
funetion L Lo
D(2) = AZO - 20 D(Ags oy Ag) @ro2As ePabrtAsbpz

satisfying ®9(y) = 0 (0 < j < k) for each

p=bmt+lny (1< <my, 1 <l <my),
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where m, = [kt(logk)1), my= [(klogk)?],
Ly=Ly=k L =L, = [k(logh)],
and the p(A,, ..., A;) are again rational integers, not all 0, with absolute
values at most k%%, The construction is certainly possible, for, in view
of the hypothesis that ef17: and e27: are algebraic, the coefficients in the
linear forms ®9(y) have the same properties as in the previous argu-
ment, whence one has only to solve M < m,m,k? linear equations in
> k3 (logk)? > 2M unknowns. Now by the first integral formula above
with 4 denoting here the monic polynomial with m,m, zeros 9, one has
log |®(z)] € —mymyklogk,

for allzon I', and, by the second integral formula, we see that the same
estimate obtains with ®(2) replaced by ®U)(7) for allj < k and all

7 =Umtlhn, (1< <m, 1<l <my),
where m} = [kt(logk) 3], mj = [kE(logk)l).

But, by Lemma 1, ® has < L, L, L, zeros within and on C, and so
®U) (') £ 0 for some 5’ and some j as above. Thus, on taking con-
jugates over (w) and appealing again to the hypothesis concerning
eh1m2, ¢be®2, we derive a polynomial P(x) with degree » and height A

satisfying n < k(logh), logh < klogk,
log |P(w)] € —m;myklogk < — k3(logk)t.

This contradicts Lemma 5 and the required result follows.

Finally, for the proof of Theorem 12.3, one assumes that all the efi7i
are algebraic and, adopting a notation as above, one constructs, for
any integer k > 1, an auxiliary function

L L L
Pr)= X ¥ X ZJ(/\l,/\z, A3) A1 Ei+A8,+A389) 2
A1=0A,=0A4,;=0

satisfying ®(y) = 0 for each
p=bm+ly, (1<, L<k),

where L = [k#], and the p(A,, A,, A;) are rational integers, not all 0,
with absolute values at most cf*. If now m is any integer > k and if
@(9) = 0 for all  with 1 < 1, < m then also ®(') = 0 for all

p' =Ny rlggs (V<1 1 < m0).

Indeed, the function ®/A4, where 4 denotes the imonie polynomial with
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m? zeros 7, is clearly regular within and on the cirele C centre the origin
and radius m?, and so, by the maximum-modulus principle or, alter-
natively, the first integral formula above, we have

log |@(7")] < —m*logm;

on the other hand, on multiplying ®(5') by a suitable denominator,
one obtains an algebraic integer in a fixed field with size s satisfying
log s < m#, and the assertion now follows on considering the norm of
®(n’). We conclude that ®(7) = 0 for all positive integral values of
I, 1,, and hence ®(z) vanishes identically. But this contradicts the
hypothesis that £, &, £; are linearly independent over the rationals,
and the contradiction proves the theorem.
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