
2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 1/10

Protected mode
In computing, protected mode, also called protected virtual address mode,[1] is an operational mode of x86-

compatible central processing units (CPUs). It allows system software to use features such as virtual memory, paging and

safe multi-tasking designed to increase an operating system's control over application software.[2][3]

When a processor that supports x86 protected mode is powered on, it begins executing instructions in real mode, in order

to maintain backward compatibility with earlier x86 processors.[4] Protected mode may only be entered after the system

software sets up one descriptor table and enables the Protection Enable (PE) bit in the control register 0 (CR0).[5]

Protected mode was first added to the x86 architecture in 1982,[6] with the release of Intel's 80286 (286) processor, and

later extended with the release of the 80386 (386) in 1985.[7] Due to the enhancements added by protected mode, it has

become widely adopted and has become the foundation for all subsequent enhancements to the x86 architecture,[8]

although many of those enhancements, such as added instructions and new registers, also brought benefits to the real

mode.

History
The 286
The 386

386 additions to protected mode
Entering and exiting protected mode
Features

Privilege levels
Real mode application compatibility
Virtual 8086 mode
Segment addressing

Protected mode
286
386
Structure of segment descriptor entry

Paging
Multitasking

Operating systems
See also
References
External links

Contents

History

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/System_software
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Backward_compatibility
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/80386


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 2/10

The Intel 8086, the predecessor to the 286, was originally designed with a 20-bit address bus for its memory.[9] This

allowed the processor to access 220 bytes of memory, equivalent to 1 megabyte.[9] At the time, 1 megabyte was considered

a relatively large amount of memory,[10] so the designers of the IBM Personal Computer reserved the first 640 kilobytes

for use by applications and the operating system and the remaining 384 kilobytes for the BIOS (Basic Input/Output

System) and memory for add-on devices.[11]

As the cost of memory decreased and memory use increased, the 1 MB limitation became a significant problem. Intel

intended to solve this limitation along with others with the release of the 286.[11]

The initial protected mode, released with the 286, was not widely used;[11] for example, it was used by Microsoft Xenix

(around 1984),[12] Coherent[13] and Minix.[14] Several shortcomings such as the inability to access the BIOS or DOS calls

due to inability to switch back to real mode without resetting the processor prevented widespread usage.[15] Acceptance

was additionally hampered by the fact that the 286 only allowed memory access in 16 bit segments via each of four

segment registers, meaning only 4*216 bytes, equivalent to 256 kilobytes, could be accessed at a time.[11] Because changing

a segment register in protected mode caused a 6-byte segment descriptor to be loaded into the CPU from memory, the

segment register load instruction took many tens of processor cycles, making it much slower than on the 8086; therefore,

the strategy of computing segment addresses on-the-fly in order to access data structures larger than 128 kilobytes (the

combined size of the two data segments) became impractical, even for those few programmers who had mastered it on the

8086/8088.

The 286 maintained backwards compatibility with its precursor the 8086 by initially entering real mode on power up.[4]

Real mode functioned virtually identically to the 8086, allowing the vast majority of existing 8086 software to run

unmodified on the newer 286. Real mode also served as a more basic mode in which protected mode could be set up,

solving a sort of chicken-and-egg problem. To access the extended functionality of the 286, the operating system would set

up some tables in memory that controlled memory access in protected mode, set the addresses of those tables into some

special registers of the processor, and then set the processor into protected mode. This enabled 24 bit addressing which

allowed the processor to access 224 bytes of memory, equivalent to 16 megabytes.[9]

With the release of the 386 in 1985,[7] many of the issues preventing

widespread adoption of the previous protected mode were addressed.[11] The

386 was released with an address bus size of 32 bits, which allows for 232 bytes

of memory accessing, equivalent to 4 gigabytes.[16] The segment sizes were also

increased to 32 bits, meaning that the full address space of 4 gigabytes could be

accessed without the need to switch between multiple segments.[16] In addition

to the increased size of the address bus and segment registers, many other new

features were added with the intention of increasing operational security and

stability.[17] Protected mode is now used in virtually all modern operating

systems which run on the x86 architecture, such as Microsoft Windows, Linux,

and many others.[18]

Furthermore, learning from the failures of the 286 protected mode to satisfy

the needs for multiuser DOS, Intel added a separate virtual 8086 mode,[19]

which allowed multiple virtualized 8086 processors to be emulated on the 386. Hardware support required for virtualizing

The 286

The 386

An Intel 80386 microprocessor

https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Address_bus
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Upper_memory_area
https://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Xenix
https://en.wikipedia.org/wiki/Coherent_(operating_system)
https://en.wikipedia.org/wiki/Minix
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Kilobyte
https://en.wikipedia.org/wiki/Real_mode
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Gigabytes
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Multiuser_DOS
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/X86_virtualization
https://en.wikipedia.org/wiki/File:Ic-photo-intel-A80386DX-33-IV-(386DX).png


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 3/10

the protected mode itself, however, had to wait for another 20 years.[20]

With the release of the 386, the following additional features were added to protected mode:[2]

Paging
32-bit physical and virtual address space (The 32-bit physical address space is not present on the 80386SX, and
other 386 processor variants which use the older 286 bus.[21])
32-bit segment offsets
Ability to switch back to real mode without resetting
Virtual 8086 mode

Until the release of the 386, protected mode did not offer a direct method to switch back into real mode once protected

mode was entered. IBM devised a workaround (implemented in the IBM AT) which involved resetting the CPU via the

keyboard controller and saving the system registers, stack pointer and often the interrupt mask in the real-time clock

chip's RAM. This allowed the BIOS to restore the CPU to a similar state and begin executing code before the reset. Later, a

triple fault was used to reset the 286 CPU, which was a lot faster and cleaner than the keyboard controller method (and

does not depend on IBM AT-compatible hardware, but will work on any 80286 CPU in any system).

To enter protected mode, the Global Descriptor Table (GDT) must first be created with a minimum of three entries: a null

descriptor, a code segment descriptor and data segment descriptor. In an IBM-compatible machine, the A20 line (21st

address line) also must be enabled to allow the use of all the address lines so that the CPU can access beyond 1 megabyte of

memory (Only the first 20 are allowed to be used after power-up, to guarantee compatibility with older software written

for the Intel 8088-based IBM PC and PC/XT models). After performing those two steps, the PE bit must be set in the CR0

register and a far jump must be made to clear the prefetch input queue.

; set PE bit
mov eax, cr0
or eax, 1
mov cr0, eax 
 
; far jump (cs = selector of code segment)
jmp cs:@pm 
 
@pm:
; Now we are in PM.

With the release of the 386, protected mode could be exited by loading the segment registers with real mode values,

disabling the A20 line and clearing the PE bit in the CR0 register, without the need to perform the initial setup steps

required with the 286.

Protected mode has a number of features designed to enhance an operating system's control over application software, in

order to increase security and system stability.[3] These additions allow the operating system to function in a way that

would be significantly more difficult or even impossible without proper hardware support.[22]

386 additions to protected mode

Entering and exiting protected mode

Features

Privilege levels

https://en.wikipedia.org/wiki/Paging
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/80386SX
https://en.wikipedia.org/wiki/Memory_segment
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/IBM_Personal_Computer_AT
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Triple_fault
https://en.wikipedia.org/wiki/Global_Descriptor_Table
https://en.wikipedia.org/wiki/A20_line
https://en.wikipedia.org/wiki/IBM_Personal_Computer
https://en.wikipedia.org/wiki/IBM_Personal_Computer_XT
https://en.wikipedia.org/wiki/Prefetch_input_queue


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 4/10

In protected mode, there are four privilege levels or rings,

numbered from 0 to 3, with ring 0 being the most privileged and

3 being the least. The use of rings allows for system software to

restrict tasks from accessing data, call gates or executing

privileged instructions.[23] In most environments, the operating

system and some device drivers run in ring 0 and applications

run in ring 3.[23]

According to the Intel 80286 Programmer's Reference
Manual,[24]

“ ...the 80286 remains upwardly
compatible with most 8086 and 80186
application programs. Most 8086
application programs can be re-
compiled or re-assembled and executed
on the 80286 in Protected Mode. ”

For the most part, the binary compatibility with real-mode code, the ability to access up to 16 MB of physical memory, and

1 GB of virtual memory, were the most apparent changes to application programmers.[25] This was not without its

limitations. If an application utilized or relied on any of the techniques below, it wouldn't run:[26]

Segment arithmetic
Privileged instructions
Direct hardware access
Writing to a code segment
Executing data
Overlapping segments
Use of BIOS functions, due to the BIOS interrupts being reserved by Intel[27]

In reality, almost all DOS application programs violated these rules.[28] Due to these limitations, virtual 8086 mode was

introduced with the 386. Despite such potential setbacks, Windows 3.0 and its successors can take advantage of the binary

compatibility with real mode to run many Windows 2.x (Windows 2.0 and Windows 2.1x) applications, which run in real

mode in Windows 2.x, in protected mode.[29]

With the release of the 386, protected mode offers what the Intel manuals call virtual 8086 mode. Virtual 8086 mode is

designed to allow code previously written for the 8086 to run unmodified and concurrently with other tasks, without

compromising security or system stability.[30]

Virtual 8086 mode, however, is not completely backwards compatible with all programs. Programs that require segment

manipulation, privileged instructions, direct hardware access, or use self-modifying code will generate an exception that

must be served by the operating system.[31] In addition, applications running in virtual 8086 mode generate a trap with

the use of instructions that involve input/output (I/O), which can negatively impact performance.[32]

Example of privilege ring usage in an operating
system using all rings

Real mode application compatibility

Virtual 8086 mode

https://en.wikipedia.org/wiki/Ring_(computer_security)
https://en.wikipedia.org/wiki/Call_gate
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/DOS
https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/Windows_3.0
https://en.wikipedia.org/wiki/Windows_2.0
https://en.wikipedia.org/wiki/Windows_2.1x
https://en.wikipedia.org/wiki/Self-modifying_code
https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Trap_(computing)
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/File:Priv_rings.svg


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 5/10

Due to these limitations, some programs originally designed to run on the 8086 cannot be run in virtual 8086 mode. As a

result, system software is forced to either compromise system security or backwards compatibility when dealing with

legacy software. An example of such a compromise can be seen with the release of Windows NT, which dropped backwards

compatibility for "ill-behaved" DOS applications.[33]

In real mode each logical address points directly into physical

memory location, every logical address consists of two 16 bit

parts: The segment part of the logical address contains the base

address of a segment with a granularity of 16 bytes, i.e. a segment

may start at physical address 0, 16, 32, ..., 220-16. The offset part

of the logical address contains an offset inside the segment, i.e.

the physical address can be calculated as physical_address :
= segment_part × 16 + offset (if the address line A20 is

enabled), respectively (segment_part × 16 + offset) mod 220 (if

A20 is off) Every segment has a size of 216 bytes.

In protected mode, the segment_part is replaced by a 16-bit selector, in which the 13 upper bits (bit 3 to bit 15) contain

the index of an entry inside a descriptor table. The next bit (bit 2) specifies whether the operation is used with the GDT or

the LDT. The lowest two bits (bit 1 and bit 0) of the selector are combined to define the privilege of the request, where the

values of 0 and 3 represent the highest and the lowest privilege, respectively. This means that the byte offset of descriptors

in the descriptor table is the same as the 16-bit selector, provided the lower three bits are zeroed.

The descriptor table entry defines the real linear address of the segment, a limit value for the segment size, and some

attribute bits (flags).

The segment address inside the descriptor table entry has a length of 24 bits so every byte of the physical memory can be

defined as bound of the segment. The limit value inside the descriptor table entry has a length of 16 bits so segment length

can be between 1 byte and 216 byte. The calculated linear address equals the physical memory address.

The segment address inside the descriptor table entry is expanded to 32 bits so every byte of the physical memory can be

defined as bound of the segment. The limit value inside the descriptor table entry is expanded to 20 bits and completed

with a granularity flag (G-bit, for short):

If G-bit is zero limit has a granularity of 1 byte, i.e. segment size may be 1, 2, ..., 220 bytes.
If G-bit is one limit has a granularity of 212 bytes, i.e. segment size may be 1 × 212, 2 × 212, ..., 220 × 212 bytes. If
paging is off, the calculated linear address equals the physical memory address. If paging is on, the calculated linear
address is used as input of paging.

The 386 processor also uses 32 bit values for the address offset.

Segment addressing

Virtual segments of 80286

Protected mode

286

386

https://en.wikipedia.org/wiki/Legacy_system
https://en.wikipedia.org/wiki/Windows_NT
https://en.wikipedia.org/wiki/A20_line
https://en.wikipedia.org/wiki/File:080810-protected-286-segments.PNG


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 6/10

80286 Segment descriptor

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Base[0..15] Limit[0..15]
6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Unused P DPL S X C R A Base[16..23]

80386 Segment descriptor

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Base[0..15] Limit[0..15]
6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

4
2

4
1

4
0

3
9

3
8

3
7

3
6

3
5

3
4

3
3

3
2

Base[24..31] G D 0 U Limit[16..19] P DPL S X C R A Base[16..23]

For maintaining compatibility with 286 protected mode a new default flag (D-bit, for short) was added. If the D-bit of a

code segment is off (0) all commands inside this segment will be interpreted as 16-bit commands by default; if it is on (1),

they will be interpreted as 32-bit commands.

Where:

A is the Accessed bit;
R is the Readable bit;
C (Bit 42) depends on X[34]:

if X = 1 then C is the Conforming bit, and determines which privilege levels can far-jump to this segment (without
changing privilege level):

if C = 0 then only code with the same privilege level as DPL may jump here;
if C = 1 then code with the same or a lower privilege level relative to DPL may jump here.

if X = 0 then C is the direction bit:

if C = 0 then the segment grows up;
if C = 1 then the segment grows down.

X is the Executable bit[34]:

if X = 1 then the segment is a code segment;
if X = 0 then the segment is a data segment.

S is the Segment type bit, which should generally be cleared for system segments;[34]

DPL is the Descriptor Privilege Level;
P is the Present bit;
D is the Default operand size;
G is the Granularity bit;
Bit 52 of the 80386 descriptor is not used by the hardware.

In addition to adding virtual 8086 mode, the 386 also added paging to protected mode.[35] Through paging, system

software can restrict and control a task's access to pages, which are sections of memory. In many operating systems,

paging is used to create an independent virtual address space for each task, preventing one task from manipulating the

Structure of segment descriptor entry

Paging



2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 7/10

memory of another. Paging also allows for pages to be moved out of primary

storage and onto a slower and larger secondary storage, such as a hard disk

drive.[36] This allows for more memory to be used than physically available in

primary storage.[36]

The x86 architecture allows control of pages through two arrays: page

directories and page tables. Originally, a page directory was the size of one

page, four kilobytes, and contained 1,024 page directory entries (PDE),

although subsequent enhancements to the x86 architecture have added the

ability to use larger page sizes. Each PDE contained a pointer to a page table. A

page table was also originally four kilobytes in size and contained 1,024 page

table entries (PTE). Each PTE contained a pointer to the actual page's physical

address and are only used when the four-kilobyte pages are used. At any given

time, only one page directory may be in active use.[37]

Through the use of the rings, privileged call gates, and the Task State Segment

(TSS), introduced with the 286, preemptive multitasking was made possible on

the x86 architecture. The TSS allows general-purpose registers, segment

selector fields, and stacks to all be modified without affecting those of another

task. The TSS also allows a task's privilege level, and I/O port permissions to

be independent of another task's.

In many operating systems, the full features of the TSS are not used.[38] This is commonly due to portability concerns or

due to the performance issues created with hardware task switches.[38] As a result, many operating systems use both

hardware and software to create a multitasking system.[39]

Operating systems like OS/2 1.x try to switch the processor between protected and real modes. This is both slow and

unsafe, because a real mode program can easily crash a computer. OS/2 1.x defines restrictive programming rules allowing

a Family API or bound program to run in either real or protected mode. Some early Unix operating systems, OS/2 1.x, and

Windows used this mode.

Windows 3.0 was able to run real mode programs in 16-bit protected mode; when switching to protected mode, it decided

to preserve the single privilege level model that was used in real mode, which is why Windows applications and DLLs can

hook interrupts and do direct hardware access. That lasted through the Windows 9x series. If a Windows 1.x or 2.x

program is written properly and avoids segment arithmetic, it will run the same way in both real and protected modes.

Windows programs generally avoid segment arithmetic because Windows implements a software virtual memory scheme,

moving program code and data in memory when programs are not running, so manipulating absolute addresses is

dangerous; programs should only keep handles to memory blocks when not running. Starting an old program while

Windows 3.0 is running in protected mode triggers a warning dialog, suggesting to either run Windows in real mode or to

obtain an updated version of the application. Updating well-behaved programs using the MARK utility with the MEMORY

parameter avoids this dialog. It is not possible to have some GUI programs running in 16-bit protected mode and other

GUI programs running in real mode. In Windows 3.1, real mode was no longer supported and could not be accessed.

Common method of using paging to
create a virtual address space

Paging (on Intel 80386) with page
size of 4K

Multitasking

Operating systems

https://en.wikipedia.org/wiki/Primary_storage
https://en.wikipedia.org/wiki/Secondary_storage
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Call_gate
https://en.wikipedia.org/wiki/Task_State_Segment
https://en.wikipedia.org/wiki/Preemptive_multitasking
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Family_API
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/OS/2
https://en.wikipedia.org/wiki/Windows_3.0
https://en.wikipedia.org/wiki/Windows_9x
https://en.wikipedia.org/wiki/Smart_pointer
https://en.wikipedia.org/wiki/Windows_3.1
https://en.wikipedia.org/wiki/File:Virtual_address_space_and_physical_address_space_relationship.svg
https://en.wikipedia.org/wiki/File:080810-protected-386-paging.svg


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 8/10

In modern 32-bit operating systems, virtual 8086 mode is still used for running applications, e.g. DPMI compatible DOS

extender programs (through virtual DOS machines) or Windows 3.x applications (through the Windows on Windows

subsystem) and certain classes of device drivers (e.g. for changing the screen-resolution using BIOS functionality) in

OS/2 2.0 and later, all under control of a 32-bit kernel. However, 64-bit operating systems (which run in long mode) no

longer use this, since virtual 8086 mode has been removed from long mode.

Assembly language
Intel
Ring (computer security)
x86 assembly language

1. "Memory access control method and system for realizing the same" (https://web.archive.org/web/20070926220520/htt
p://www.patentstorm.us/patents/5483646-claims.html). US Patent 5483646. May 23, 1995. Archived from the original
(http://www.patentstorm.us/patents/5483646-claims.html) (Patent) on September 26, 2007. Retrieved 2007-07-14.
"The memory access control system according to claim 4, wherein said first address mode is a real address mode,
and said second address mode is a protected virtual address mode."

2. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 2.1.3 The Intel 386 Processor (1985).

3. root (July 14, 2007). "Guide: What does protected mode mean?" (http://www.delorie.com/djgpp/doc/ug/basics/protect
ed.html) (Guide). Delorie Software. Retrieved 2007-07-14. "The purpose of protected mode is not to protect your
program. The purpose is to protect everyone else (including the operating system) from your program."

4. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 3.1 Modes of Operation.

5. Collins, Robert (2007). "Protected Mode Basics" (http://archive.wikiwix.com/cache/20110707003604/ftp://ftp.utcluj.ro/p
ub/users/nedevschi/PMP/protected86/collinsprot.PDF) (PDF). ftp.utcluj.ro. Archived from the original (ftp://ftp.utcluj.ro/
pub/users/nedevschi/PMP/protected86/collinsprot.PDF) (PDF) on 2011-07-07. Retrieved 2009-07-31.

6. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 2.1.2 The Intel 286 Processor (1982).

7. "Intel Global Citizenship Report 2003" (https://web.archive.org/web/20080322075839/http://www.intel.com/intel/financ
e/gcr03/39-years_of_innovation.htm). Archived from the original (http://www.intel.com/intel/finance/gcr03/39-years_of
_innovation.htm) (Timeline) on 2008-03-22. Retrieved 2007-07-14. "1985 Intel launches Intel386 processor"

8. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 2.1 Brief History of Intel 64 and IA-32 Architecture.

9. "A+ - Hardware" (http://www.brainbell.com/tutors/A+/Hardware/PC_Microprocessor_Developments_and_Features.ht
m) (Tutorial/Guide). PC Microprocessor Developments and Features Tutorials. BrainBell.com. Retrieved 2007-07-24.

10. Risley, David (March 23, 2001). "A CPU History" (https://web.archive.org/web/20080829165311/http://www.pcmech.c
om/show/processors/35/). PCMechanic. Archived from the original (http://www.pcmech.com/show/processors/35/)
(Article) on August 29, 2008. Retrieved 2007-07-24. "What is interesting is that the designers of the time never
suspected anyone would ever need more than 1 MB of RAM."

11. Kaplan, Yariv (1997). "Introduction to Protected-Mode" (https://web.archive.org/web/20070622205752/http://www.inter
nals.com/articles/protmode/introduction.htm). Internals.com. Archived from the original (http://www.internals.com/articl
es/protmode/introduction.htm) (Article) on 2007-06-22. Retrieved 2007-07-24.

See also

References

https://en.wikipedia.org/wiki/Virtual_8086_mode
https://en.wikipedia.org/wiki/DOS_Protected_Mode_Interface
https://en.wikipedia.org/wiki/DOS_extender
https://en.wikipedia.org/wiki/Virtual_DOS_machine
https://en.wikipedia.org/wiki/Windows_on_Windows
https://en.wikipedia.org/wiki/Device_driver
https://en.wikipedia.org/wiki/Long_mode
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Ring_(computer_security)
https://en.wikipedia.org/wiki/X86_assembly_language
https://web.archive.org/web/20070926220520/http://www.patentstorm.us/patents/5483646-claims.html
http://www.patentstorm.us/patents/5483646-claims.html
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
http://www.delorie.com/djgpp/doc/ug/basics/protected.html
https://en.wikipedia.org/wiki/Delorie_Software
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
http://archive.wikiwix.com/cache/20110707003604/ftp://ftp.utcluj.ro/pub/users/nedevschi/PMP/protected86/collinsprot.PDF
ftp://ftp.utcluj.ro/pub/users/nedevschi/PMP/protected86/collinsprot.PDF
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
https://web.archive.org/web/20080322075839/http://www.intel.com/intel/finance/gcr03/39-years_of_innovation.htm
http://www.intel.com/intel/finance/gcr03/39-years_of_innovation.htm
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
http://www.brainbell.com/tutors/A+/Hardware/PC_Microprocessor_Developments_and_Features.htm
https://web.archive.org/web/20080829165311/http://www.pcmech.com/show/processors/35/
http://www.pcmech.com/show/processors/35/
https://web.archive.org/web/20070622205752/http://www.internals.com/articles/protmode/introduction.htm
http://www.internals.com/articles/protmode/introduction.htm


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 9/10

12. "Microsoft XENIX 286 Press Release" (http://www.tenox.net/docs/xenix/microsoft_xenix_30_286_press_release.pdf)
(PDF) (Press release). Microsoft.

13. "General Information FAQ for the Coherent Operating System" (http://textfiles.com/internet/FAQ/coherent.faq).
January 23, 1993.

14. "MINIX Information Sheet" (https://web.archive.org/web/20140107074722/http://minix.net/minix/minix.html). Archived
from the original (http://minix.net/minix/minix.html) on January 7, 2014.

15. Mueller, Scott (March 24, 2006). "P2 (286) Second-Generation Processors" (http://www.informit.com/articles/article.as
px?p=481859&seqNum=13). Upgrading and Repairing PCs, 17th Edition (http://www.informit.com/store/product.asp
x?isbn=0789734044) (Book) (17 ed.). Que. ISBN 0-7897-3404-4. Retrieved 2017-07-11.

16. 80386 Programmer's Reference Manual (http://bitsavers.org/pdf/intel/80386/230985-001_80386_Programmers_Refer
ence_Manual_1986.pdf) (PDF). Santa Clara, CA: Intel. 1986. Section 2.1 Memory Organization and Segmentation.

17. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 3.1 Modes of Operation.

18. Hyde, Randall (November 2004). "12.10. Protected Mode Operation and Device Drivers" (http://safari.oreilly.com/159
3270038/ns1593270038-CHP-12-SECT-10). Write Great Code. O'Reilly. ISBN 1-59327-003-8.

19. Charles Petzold, Intel's 32-bit Wonder: The 80386 Microprocessor, PC Magazine, November 25, 1986, pp. 150-152
20. Tom Yager (6 November 2004). "Sending software to do hardware's job" (http://www.infoworld.com/article/2664741/co

mputer-hardware/sending-software-to-do-hardware-s-job.html). InfoWorld. Retrieved 24 November 2014.
21. Shvets, Gennadiy (June 3, 2007). "Intel 80386 processor family" (http://www.cpu-world.com/CPUs/80386/index.html)

(Article). Retrieved 2007-07-24. "80386SX — low cost version of the 80386. This processor had 16 bit external data
bus and 24-bit external address bus."

22. Intel 80386 Programmer's Reference Manual 1986 (http://bitsavers.org/components/intel/80386/230985-001_80386_
Programmers_Reference_Manual_1986.pdf) (PDF). Santa Clara, CA: Intel. 1986. Chapter 7, Multitasking.

23. Intel 64 and IA-32 Architectures Software Developer's Manual Volume 1: Basic Architecture (https://software.intel.co
m/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture). Intel.
May 2019. Section 6.3.5 Calls to Other Privilege Levels.

24. 80286 and 80287 Programmer's Reference Manual (http://bitsavers.org/components/intel/80286/210498-005_80286_
and_80287_Programmers_Reference_Manual_1987.pdf) (PDF). Santa Clara, CA: Intel. 1987. Section 1.2 Modes of
Operation.

25. 80286 and 80287 Programmer's Reference Manual (http://bitsavers.org/components/intel/80286/210498-005_80286_
and_80287_Programmers_Reference_Manual_1987.pdf) (PDF). Santa Clara, CA: Intel. 1987. Section 1.3.1 Memory
Management.

26. 80286 and 80287 Programmer's Reference Manual (http://bitsavers.org/components/intel/80286/210498-005_80286_
and_80287_Programmers_Reference_Manual_1987.pdf) (PDF). Santa Clara, CA: Intel. 1987. Appendix C 8086/8088
Compatibility Considerations.

27. "Memory access control method and system for realizing the same" (http://www.freepatentsonline.com/6105101.html)
(Patent). US Patent 5483646. May 6, 1998. Retrieved 2007-07-25. "This has been impossible to-date and has forced
BIOS development teams to add support into the BIOS for 32 bit function calls from 32 bit applications."

28. Robinson, Tim (August 26, 2002). "Virtual 8086 Mode" (https://web.archive.org/web/20021003235610/http://osdev.ber
lios.de/v86.html). berliOS. Archived from the original (http://osdev.berlios.de/v86.html) (Guide) on October 3, 2002.
Retrieved 2007-07-25. "...secondly, protected mode was also incompatible with the vast amount of real-mode code
around at the time."

29. Robinson, Tim (August 26, 2002). "Virtual 8086 Mode" (https://web.archive.org/web/20021003235610/http://osdev.ber
lios.de/v86.html). berliOS. Archived from the original (http://osdev.berlios.de/v86.html) (Guide) on October 3, 2002.
Retrieved 2007-07-25.

30. Intel 64 and IA-32 Architectures Software Developer's Manual Combined Volumes 3A, 3B, 3C, and 3D: System
Programming Guide (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volum
es-3a-3b-3c-and-3d-system-programming-guide). Intel. May 2019. Section 20.2 Virtual 8086 Mode.

http://www.tenox.net/docs/xenix/microsoft_xenix_30_286_press_release.pdf
http://textfiles.com/internet/FAQ/coherent.faq
https://web.archive.org/web/20140107074722/http://minix.net/minix/minix.html
http://minix.net/minix/minix.html
http://www.informit.com/articles/article.aspx?p=481859&seqNum=13
http://www.informit.com/store/product.aspx?isbn=0789734044
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7897-3404-4
http://bitsavers.org/pdf/intel/80386/230985-001_80386_Programmers_Reference_Manual_1986.pdf
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
http://safari.oreilly.com/1593270038/ns1593270038-CHP-12-SECT-10
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-59327-003-8
https://en.wikipedia.org/wiki/Charles_Petzold
https://en.wikipedia.org/wiki/PC_Magazine
http://www.infoworld.com/article/2664741/computer-hardware/sending-software-to-do-hardware-s-job.html
http://www.cpu-world.com/CPUs/80386/index.html
http://bitsavers.org/components/intel/80386/230985-001_80386_Programmers_Reference_Manual_1986.pdf
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-1-basic-architecture
https://en.wikipedia.org/wiki/Intel
http://bitsavers.org/components/intel/80286/210498-005_80286_and_80287_Programmers_Reference_Manual_1987.pdf
http://bitsavers.org/components/intel/80286/210498-005_80286_and_80287_Programmers_Reference_Manual_1987.pdf
http://bitsavers.org/components/intel/80286/210498-005_80286_and_80287_Programmers_Reference_Manual_1987.pdf
http://www.freepatentsonline.com/6105101.html
https://web.archive.org/web/20021003235610/http://osdev.berlios.de/v86.html
http://osdev.berlios.de/v86.html
https://web.archive.org/web/20021003235610/http://osdev.berlios.de/v86.html
http://osdev.berlios.de/v86.html
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide
https://en.wikipedia.org/wiki/Intel


2/12/2019 Protected mode - Wikipedia

https://en.wikipedia.org/wiki/Protected_mode 10/10

Protected Mode Basics (http://www.rcollins.org/articles/pmbasics/tspec_a1_doc.html)
Introduction to Protected-Mode (https://web.archive.org/web/20070622205752/http://www.internals.com/articles/protm
ode/introduction.htm)
Overview of the Protected Mode Operations of the Intel Architecture (http://www.intel.com/design/intarch/papers/exc_i
a.htm)
TurboIRC.COM tutorial to enter protected mode from DOS (http://www.turboirc.com/asm)
Protected Mode Overview and Tutorial (http://viralpatel.net/taj/tutorial/protectedmode.php)
Code Project Protected Mode Tutorial (http://www.codeproject.com/KB/system/asm.aspx)
Akernelloader switching from real mode to protected mode (https://code.google.com/p/akernelloader/)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Protected_mode&oldid=917615863"

This page was last edited on 24 September 2019, at 17:09 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

31. Intel 64 and IA-32 Architectures Software Developer's Manual Combined Volumes 3A, 3B, 3C, and 3D: System
Programming Guide (https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volum
es-3a-3b-3c-and-3d-system-programming-guide). Intel. May 2019. Section 20.2.7 Sensitive Instructions.

32. Robinson, Tim (August 26, 2002). "Virtual 8086 Mode" (https://web.archive.org/web/20021003235610/http://osdev.ber
lios.de/v86.html). berliOS. Archived from the original (http://osdev.berlios.de/v86.html) (Guide) on October 3, 2002.
Retrieved 2007-07-25. "A downside to using V86 mode is speed: every IOPL-sensitive instruction will cause the CPU
to trap to kernel mode, as will I/O to ports which are masked out in the TSS."

33. Dabak, Prasad; Millind Borate (October 1999). Undocumented Windows NT (Book). Hungry Minds. ISBN 0-7645-
4569-8.

34. "Global Descriptor table - OSDev Wiki" (https://wiki.osdev.org/Global_Descriptor_Table#Structure).
35. "ProtectedMode overview [deinmeister.de]" (http://www.deinmeister.de/x86modes.htm#c1) (Website). Retrieved

2007-07-29.
36. "What Is PAE X86?" (http://technet2.microsoft.com/windowsserver/en/library/efc41320-713f-4004-bc81-ddddfc855265

1033.mspx?mfr=true) (Article). Microsoft TechNet. May 28, 2003. Retrieved 2007-07-29. "The paging process allows
the operating system to overcome the real physical memory limits. However, it also has a direct impact on
performance because of the time necessary to write or retrieve data from disk."

37. Gareau, Jean. "Advanced Embedded x86 Programming: Paging" (http://www.embedded.com/98/9806fe2.htm)
(Guide). Embedded.com. Retrieved 2007-07-29. "Only one page directory may be active at a time, indicated by the
CR3 register."

38. zwanderer (May 2, 2004). "news: Multitasking for x86 explained #1" (https://web.archive.org/web/20070212161434/htt
p://neworder.box.sk/newsread.php?newsid=10562). NewOrer. NewOrder. Archived from the original (http://neworder.
box.sk/newsread.php?newsid=10562) (Article) on 2007-02-12. Retrieved 2007-07-29. "The reason why software task
switching is so popular is that it can be faster than hardware task switching. Intel never actually developed the
hardware task switching, they implemented it, saw that it worked, and just left it there. Advances in multitasking using
software have made this form of task switching faster (some say up to 3 times faster) than the hardware method.
Another reason is that the Intel way of switching tasks isn't portable at all"

39. zwanderer (May 2, 2004). "news: Multitasking for x86 explained #1" (https://web.archive.org/web/20070212161434/htt
p://neworder.box.sk/newsread.php?newsid=10562). NewOrer. NewOrder. Archived from the original (http://neworder.
box.sk/newsread.php?newsid=10562) (Article) on 2007-02-12. Retrieved 2007-07-29. "...both rely on the Intel
processors ability to switch tasks, they rely on it in different ways."

External links

http://www.rcollins.org/articles/pmbasics/tspec_a1_doc.html
https://web.archive.org/web/20070622205752/http://www.internals.com/articles/protmode/introduction.htm
http://www.intel.com/design/intarch/papers/exc_ia.htm
http://www.turboirc.com/asm
http://viralpatel.net/taj/tutorial/protectedmode.php
http://www.codeproject.com/KB/system/asm.aspx
https://code.google.com/p/akernelloader/
https://en.wikipedia.org/w/index.php?title=Protected_mode&oldid=917615863
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-3a-3b-3c-and-3d-system-programming-guide
https://en.wikipedia.org/wiki/Intel
https://web.archive.org/web/20021003235610/http://osdev.berlios.de/v86.html
http://osdev.berlios.de/v86.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7645-4569-8
https://wiki.osdev.org/Global_Descriptor_Table#Structure
http://www.deinmeister.de/x86modes.htm#c1
http://technet2.microsoft.com/windowsserver/en/library/efc41320-713f-4004-bc81-ddddfc8552651033.mspx?mfr=true
http://www.embedded.com/98/9806fe2.htm
https://web.archive.org/web/20070212161434/http://neworder.box.sk/newsread.php?newsid=10562
http://neworder.box.sk/newsread.php?newsid=10562
https://web.archive.org/web/20070212161434/http://neworder.box.sk/newsread.php?newsid=10562
http://neworder.box.sk/newsread.php?newsid=10562

