
Dynamic Branch Prediction (Continued)

Branch Target Buffer

Branch prediction buffers contain prediction

about whether the next branch will be taken (T) or not

(NT), but it does not supply the target PC value. A

Branch Target Buffer (BTB) does this.

            Instr address   Predicted PC

 BTB is a cache that holds

(instr addr, predicted PC)

 for every taken branch

The control unit looks up the branch target buffer

during the “F” phase. The target PC is found out even

before it is known to be a branch instruction.



BTB hit and miss

(BTB Hit)  Implements zero-cycle branches

(BTB Miss) Target PC is computed and entered into

the target buffer.

            Instr address   Predicted PC

BTB is managed (by the control unit) as a regular

cache. With a larger BTB there are fewer misses and

the performance improves.



Predication

Predication mitigates the hassle of handling

conditional branches in pipelined processors.

Example

If <condition>

then <do this>

else <do that>

end if

If <condition> branch to L1

do that;

branch to L2

L1: do this

L2: exit



Using predication, we can translate it to

<p> <do this: step 1>

<p> <do this: step 2>

<not p> <do that: step 1>

<not p> <do that: step 2>

Each instruction is executed when a predicate is true.

Every instruction enters the pipeline, but results are

suppressed if the predicate is false.

Predication eliminates branch prediction logic, and

allows better bundling of instructions, and sometimes

better parallelism.  But it needs extra space in

instructions.

Predication is used in Intel’s IA-64 architecture, ARM

and some newer processors



Examples

if (R1==0) { BNEZ  R1,  LL

     R2 = R3 ADD R2, R3, R0

     R4 = R5 ADD R4, R5, R0

  }  else  {      J  NN

    R6 = R7 LL:   ADD R6, R7, R0

    R8 = R9 ADD R8, R9, R0

} NN:

CMOVZ R2, R3, R1   (conditional move: if R1=0 then R2=R3)

CMOVZ R4, R5, R1   (conditional move: if R1=0 then R4=R5)

CMOVN R6, R7, R1  (conditional move: if R1≠0 then R6=R7)

CMOVN R8, R9, R1  (conditional move: if R1≠0 then R8=R9)



More examples of predication:

if (R1 == R2) {    CMEQ R1, R2, P2, P3

R3 = R4    {if R1=R2 then set P2 else set P3)

} else  {  <P2>  ADD R3, R4, R0

R5 = R6 <P3>  ADD R5, R6, R0

}



Instruction Level Parallelism

Instruction streams are inherently sequential. But

superscalar processors are able to handle multiple

instruction streams in parallel. To utilize the available

parallelism, it is important to study techniques for

extracting Instruction Level Parallelism (ILP).

Superscalar processors rely on ILP for speedup.

Example of Superscalar Processing

instr 1 2 3 4 5 6 7 8 9

1(integer) F D X M W

2 (FP) F D X M W

3 (integer) F D X M W

4 (FP) F D X M W

5 F D X M W

6 F D X M W



If N instructions are issued per cycle then the ideal

CPI is 1/N.  However, the probability of hazards

increases, and it makes the CPI lower than 1/N.

For example, by scheduling multiple unrelated

instructions in parallel, ILP improves, and the

instruction throughput also improves.

ILP can be improved at run time, or at compile time.

Run time methods of bundling unrelated instructions

rely on the control unit, and increases the cost of the

machine.



Very Large Instruction Word (VLIW) Processors

In VLIW, the compiler packages a number of

operations from the instruction stream into one large

instruction word.

    Instruction size may be as large as 100-150 bits.

Needs better methods for identifying parallelism in the

instruction stream.

EPIC utilizes this idea in the IA-64 specifications.

Integer     integer     FP  FP    memory      memory     branch



Hardware Speculation

Superscalar machines often remain under-utilized.

Hardware speculation helps improve the utilization of

multiple issue processors, and leads to better speed-

up.

Speculative Execution fi

Execute codes before it is known that it will be needed.

® Schedule instructions based on speculation

® Save the result in a Re-Order Buffer (ROB)

® Commit the results when they are correct,

otherwise discard them.



Example 1

even = 0;  odd= 0;  i=0;

while (i < N) {

k := i*i

if (i/2*2 == i) even = even + k

else odd = odd + k

i= i+1

}

The Strategy

To improve ILP using speculation, until the outcome

of branch is known, evaluate both (even + k) and (odd

+ k) possibly in parallel, on a two-issue machine, and

save them in ROB



Problems and Solutions

What if a speculatively executed instruction

causes an exception and the speculation turns out to

be false? It is counterproductive!  Consider this:

if (x > 0) z = y / x;

Suppose x = 0. The program speculatively executes

y/x causing an exception! This leads to the failure of a

correct program!

A set of status bits called poison bits are attached to

result registers. Poison bits are set by speculative

instructions when they cause exceptions, but

exception handling is disabled. The poison bits cause

an exception when the speculation is correct.



Compiler Support for better ILP

Loop Unrolling

Consider the following program on the MIPS processor.

    loop: R1 := M[i]; 1

R2 := R1+99; 3

M[i] :=  R2; 5

i := i-1; 6

if (i ≠ 0) then goto loop 8

branch delay slot 9

If the branch penalty is 1 cycle, then every iteration of the

loop takes 9 cycles. Unrolling of the loop unfolds additional

parallelism.

           N iterations N/4 iterations



The Unrolled Loop

    Before optimization       After Optimization

    loop: R1 := M[i];     loop: R1:= M[i];

R2 := R1+99; R3:= M[i-1];

M[i] := R2; R5:= M[i-2];

R3 := M[i-1]; R7:=  M[i-3];

R4 := R3+99; R2:= R1+99;

M[i-1] := R4; R4:= R3+99

R5 := M[i-2]; R6:= R5+99

R6 := R5+99; R8:= R7+99

M[i-2] := R6; M[i]:= R2

R7 := M[i-3]; M[i-1]:=R4

R8 := R7+99; M[i-2]:=R6

M[i-3] := R8; M[i-3]:=R8

i := i - 4; i:= i - 4

if (i≠0) the goto loop; if (i≠0) the goto loop;

• Estimate the performance improvement now.

• Branches may marginally degrade performance.

• Easy to schedule on superscalar architectures.


