Utility Scale Experiment III

2024/07/19 Tamiya Onodera, Kifumi Numata, Toshinari Itoko IBM Research – Tokyo

Outline

- A brief lecture on GHZ states [by Tamiya]
 - preparing them on real devices

<Break>

- A jupyter notebook session [by Kifumi]
 - simpler examples
 - your assignment

Ξ	Greenberger–Horne–Zeilinger sta		又A 5 languages			~	
Article	Talk	Read	Edit	View history	Tools	~	

From Wikipedia, the free encyclopedia

In physics, in the area of quantum information theory, a **Greenberger–Horne–Zeilinger state** (**GHZ state**) is a certain type of entangled quantum state that involves at least three subsystems (particle states, qubits, or qudits). The four-particle version was first studied by Daniel Greenberger, **Michael Horne** and Anton Zeilinger in 1989, and the three-particle version was introduced by N. David Mermin in 1990.

https://en.wikipedia.org/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state

The Nobel Prize in Physics 2022

III. Niklas Elmehed © Nobel Prize Outreach Alain Aspect

Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach John F. Clauser

Prize share: 1/3

III. Niklas Elmehed © Nobel Prize Outreach Anton Zeilinger

Prize share: 1/3

You learnt it on Lecture 2! (Quantum Bits, Gates, and Circuits)

GHZ state

GHZ state (Greenberger-Horne-Zeilinger state) is a maximally entangled state of three or more qubits. GHZ state for three qubits is defined as

$$rac{1}{\sqrt{2}}(\ket{000}+\ket{111})$$

It can be created with the following quantum circuit.

```
[32]: qc = QuantumCircuit(3,3)
    qc.h(0)
    qc.cx(0,1)
    qc.cx(1,2)
    qc.measure(0, 0)
    qc.measure(1, 1)
    qc.measure(2, 2)
    qc.draw("mpl")
```


[32]:

You learnt it on Lecture 2! (Quantum Bits, Gates, and Circuits)

Exercise 2

The GHZ state of the 8 quantum bits is as follows

 $rac{1}{\sqrt{2}}(\ket{0000000}+\ket{1111111}).$

Let's create this state with the shallowest circuit. The depth of the shallowest quantum circuit is 5 with the measurement gates combined.

```
[45]: # Step 1
qc = QuantumCircuit(8,8)
##your code goes here##
qc.h(0); qc.cx(0,4)
qc.cx(0,2); qc.cx(4,6)
qc.cx(0,1); qc.cx(2,3); qc.cx(4,5); qc.cx(6,7)
# measure
for i in range(8):
    qc.measure(i, i)
qc.draw("mpl")
#print(qc.depth())
```


[45]:

You learnt more on Lecture 10! (Quantum Circuit Optimization)

0.	JUDYTET 20240621_UTokyo_qcopt Last Checkpoint: last month											
File	e	Edit	View	w	Run	Ker	nel	Sett	ngs Help			
8	+	Ж	0	۵	•		С	**	Markdown 🗸	Juj		

Part 1. Running GHZ circuits with different optimization levels

Circuit optimization matters

for c in [circ0, circ1, circ2]:
 print(c.count_ops())

OrderedDict({'rz': 77, 'sx': 40, 'ecr': 19, 'measure': 5, 'x': 4, 'barrier': 1})
OrderedDict({'rz': 26, 'sx': 17, 'ecr': 10, 'measure': 5, 'x': 4, 'barrier': 1})
OrderedDict({'rz': 27, 'sx': 13, 'ecr': 7, 'measure': 5, 'x': 1, 'barrier': 1})

You learnt more on Lecture 10! (Quantum Circuit Optimization)

Circuit synthesis matters


```
for c in [circ_org, circ_new]:
    print(c.count_ops())
```

OrderedDict({'rz': 27, 'sx': 13, 'ecr': 7, 'measure': 5, 'x': 1, 'barrier': 1}) OrderedDict({'rz': 19, 'sx': 10, 'measure': 5, 'ecr': 4, 'x': 1, 'barrier': 1})

Let us prepare a large GHZ sate on a real device!

Why a large GHZ state?

• Many think it serves as a benchmark of a near-term quantum computer.

- Some use it as a benchmark of an algorithm / methodology.
 - e.g., error mitigation

This is an active area of research.

18-qubit GHZ on a superconducting QC (2020)

PHYSICAL REVIEW A 101, 032343 (2020)

Editors' Suggestion

Verifying multipartite entangled Greenberger-Horne-Zeilinger states via multiple quantum coherences

Ken X. Wei,^{*} Isaac Lauer[®], Srikanth Srinivasan[®], Neereja Sundaresan, Douglas T. McClure[®], David Toyli, David C. McKay, Jay M. Gambetta, and Sarah Sheldon *IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA*

27-qubit GHZ on a superconducting QC (2021)

J. Phys. Commun. 5 (2021) 095004

https://doi.org/10.1088/2399-6528/ac1df

Journal of Physics Communications

PAPER

Generation and verification of 27-qubit Greenberger-Horne-Zeilinger states in a superconducting quantum computer

Gary J Mooney¹, Gregory A L White¹, Charles D Hill^{1,2}, and Lloyd C L Hollenberg¹

¹ School of Physics, University of Melbourne, VIC, Parkville, 3010, Australia

 2 $\,$ School of Mathematics and Statistics, University of Melbourne, VIC, Parkville, 3010, Australia

29-qubit GHZ on a superconducting QC (2022)

PHYSICAL REVIEW A 106, 012423 (2022)

Efficient quantum readout-error mitigation for sparse measurement outcomes of near-term quantum devices

Bo Yang¹, Rudy Raymond¹,^{2,3} and Shumpei Uno^{3,4}

¹Graduate School of Information Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan ²IBM Quantum, IBM Research-Tokyo, 19-21 Nihonbashi Hakozaki-cho, Chuo-ku, Tokyo 103-8510, Japan ³Quantum Computing Center, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan ⁴Mizuho Research & Technologies, Ltd, 2-3 Kanda-Nishikicho, Chiyoda-ku, Tokyo 101-8443, Japan

32-qubit GHZ on an ion-trap QC (2023)

PHYSICAL REVIEW X 13, 041052 (2023)

Featured in Physics

A Race-Track Trapped-Ion Quantum Processor

S. A. Moses^{1,*,†} C. H. Baldwin^{0,1,*,‡} M. S. Allman,¹ R. Ancona,¹ L. Ascarrunz,¹ C. Barnes,¹ J. Bartolotta^{0,1} B. Bjork,¹ P. Blanchard,¹ M. Bohn,¹ J. G. Bohnet,¹ N. C. Brown,¹ N. Q. Burdick,² W. C. Burton^{0,1} S. L. Campbell,¹ J. P. Campora III,¹ C. Carron,³ J. Chambers,¹ J. W. Chan,¹ Y. H. Chen,¹ A. Chernoguzov,¹ E. Chertkov^{0,1} J. Colina,¹ J. P. Curtis,¹ R. Daniel,¹ M. DeCross^{0,1} D. Deen^{0,3} C. Delaney,¹ J. M. Dreiling,¹ C. T. Ertsgaard,³ J. Esposito,¹ B. Estey,¹ M. Fabrikant,¹ C. Figgatt^{0,1} C. Foltz,¹ M. Foss-Feig,¹ D. Francois,¹ J. P. Gaebler,¹ T. M. Gatterman,¹ C. N. Gilbreth,¹ J. Giles,¹ E. Glynn,¹ A. Hall,¹ A. M. Hankin,¹ A. Hansen,¹ D. Hayes,¹ B. Higashi,³ I. M. Hoffman^{0,1} B. Horning,³ J. J. Hout,¹ R. Jacobs,¹ J. Johansen,¹ L. Jones,¹ J. Karcz,⁴ T. Klein,³ P. Lauria,¹ P. Lee,¹ D. Liefer,¹ S. T. Lu,⁴ D. Lucchetti,¹ C. Lytle,¹ A. Malm,¹ M. Matheny,¹ B. Mathewson,¹ K. Mayer,¹ D. B. Miller,¹ M. Mills,¹ B. Neyenhuis,¹ L. Nugent,¹ S. Olson,³ J. Parks,¹ G. N. Price,¹ Z. Price,¹ M. Pugh,¹ A. Ransford,¹ A. P. Reed,¹ C. Roman,¹ M. Rowe,¹ C. Ryan-Anderson,¹ S. Sanders,¹ J. Sedlacek,² P. Shevchuk,¹ P. Siegfried,¹ T. Skripka,¹ B. Spaun,¹ R. T. Sprenkle,¹ R. P. Stutz,¹ M. Swallows,¹ R. I. Tobey,¹ A. Tran,¹ T. Tran,¹ E. Vogt,⁴ C. Volin,¹ J. Walker,¹ A. M. Zolot,¹ and J. M. Pino¹

¹Quantinuum, 303 South Technology Court, Broomfield, Colorado 80021, USA
 ²Quantinuum, 1985 Douglas Drive North, Golden Valley, Minnesota 55422, USA
 ³Quantinuum, 12001 State Highway 55, Plymouth, Minnesota 55441, USA
 ⁴Honeywell Aerospace, 12001 State Highway 55, Plymouth, Minnesota 55441, USA

What matters

Qubit mapping and routing

Circuit depth

• Error mitigation / Error suppression

What matters

- Qubit mapping and routing
 - The interaction graph of a circuit should be perfectly embedded into the coupling map of a device.
 - Qubits with lower read-out errors and entangling gates with lower errors should be picked up.
 - Rely on the transpiler with a "transpiler-friendly" circuit or do it yourself!
- Circuit depth
 - A "balanced" tree of entangling gates should be pursued.
- Error mitigation / Error suppression

Depth: 76 (two-qubit depth 16)

Depth: 41 (two-qubit depth 7)

Depth: 26 (two-qubit depth 4)

You learnt this on Lecture 9! (Quantum Hardware)

How we verify it?

N = 6, ibm_brisbane

N = 12, ibm_brisbane

What matters

- Qubit mapping and routing
 - The interaction graph of a circuit should be perfectly embedded into the coupling map of a device.
 - Qubits with lower read-out errors and entangling gates with lower errors should be picked up.
 - Rely on the transpiler with a "transpiler-friendly" circuit or do it yourself!
- Circuit depth
 - A "balanced" tree of entangling gates should be pursued.
- Error mitigation / Error suppression

How we verify it?

 Want to quantify the closeness between what we want to prepare and what we generated on a real device.

• Different methods proposed.

• We adopt the one based on fidelity in [1].

[1] Otfried Gühne, Chao-Yang Lu, Wei-Bo Gao, and Jian-Wei Pan, "Toolbox for entanglement detection and fidelity estimation", Phys. Rev. A 76, 030305 (2007)

Fidelity

• Quantifies the closeness between two density matrices.

•
$$F(
ho,\sigma):=\left(tr(\sqrt{
ho^{1/2}\sigma
ho^{1/2}}
ight)^2$$
 for two quantum states ho and σ .

- $0 \leq F(
 ho,\sigma) \leq 1$
- When ho is a pure state $|\psi\rangle\langle\psi|$, $F(|\psi\rangle\langle\psi|,\sigma)=\langle\psi|\sigma|\psi\rangle=Tr(\sigma|\psi\rangle\langle\psi|)$.

Calculating $F(|\psi
angle\langle\psi|,\sigma)$

- First, we have $\sqrt{|\psi
 angle\langle\psi|}=|\psi
 angle\langle\psi|.$
- Then, $\sqrt{|\psi\rangle\langle\psi|}\sigma\sqrt{|\psi\rangle\langle\psi|} = |\psi\rangle\langle\psi|\sigma|\psi\rangle\langle\psi| = \langle\psi|\sigma|\psi\rangle|\psi\rangle\langle\psi|$. (Note: $\langle\psi|\sigma|\psi\rangle$ is a scalar.)
- Therefore, $\sqrt{\sqrt{|\psi\rangle}\langle\psi|}\sigma\sqrt{|\psi\rangle}\langle\psi|=\sqrt{\langle\psi|\sigma|\psi\rangle}|\psi\rangle\langle\psi|$
- This leads to $Tr(\sqrt{\langle \psi | \sigma | \psi \rangle} | \psi \rangle \langle \psi |) = \sqrt{\langle \psi | \sigma | \psi \rangle}.$

Computing the Fidelity in our GHZ Experiment.

• What we want to prepare is:

$$|GHZ
angle = rac{1}{\sqrt{2}}(|0
angle^{\otimes N}+|1
angle^{\otimes N})$$

• Let ρ be the state our circuite generated on a real device. Then, what we want to compute is:

$$egin{aligned} F(|GHZ
angle\langle GHZ|,
ho) &= Tr(
ho|GHZ
angle\langle GHZ|) \ &= rac{1}{2}\{Tr(
ho|0
angle 0|^{\otimes N}) + Tr(
ho|1
angle\langle 1|^{\otimes N}) + Tr(
ho\left(|0
angle 1|^{\otimes N} + |1
angle 0|^{\otimes N}))\} \end{aligned}$$

• By repeatedly preparing and measuring ho with $Z^{\otimes N}$, we can obtain the first two of the traces.

Nice Formula

- We can write $|0
angle 1|^{\otimes N}+|1
angle 0|^{\otimes N}$ as

$$rac{1}{N}\sum_{k=1}^N (-1)^k M_k$$
 where $M_k=\left(cos(k\pi/N)X+sin(k\pi/N)Y
ight)^{\otimes N}.$

We then have

$$Tr(
ho \left(|0
angle 1|^{\otimes N} + |1
angle 0|^{\otimes N}
ight)) = rac{1}{N} \sum_{k=1}^N {(-1)^k Tr(
ho M_k)}.$$

- We can thus compute this with N local measurements with $Z^{\otimes N}$ after applying unitary transformations to

$$M_k = \Big(Rz(k\pi/N)HZHRz(-k\pi/N)\Big)^{\otimes N}.$$

Verifying the Formula

• First, we have

$$(-1)^k M_k = (-1)^k (exp(-ik\pi/N)|0
angle 1| + exp(ik\pi/N)|1
angle 0|)^{\otimes N}.$$

Expanding the RHS gives 2^N terms each of which is an N-fold tensor product.

- One of the terms is $|0\rangle\langle 1|^{\otimes N}$, whose coefficient is $(-1)^k exp(-ik\pi/N)^N = 1$. Thus, taking the summation from k = 1 to N, the coefficienct of this term ends up with N.
- Similarly, one of the terms is $|1\rangle\langle 0|^{\otimes N}$, whose coefficient is $(-1)^k exp(ik\pi/N)^N = 1$. Thus, taking the summation from k = 1 to N, the coefficienct of this term ends up with N.
- · Each of the other terms has the coefficient of

$$(-1)^k exp(-ik\pi/N)^m exp(ik\pi/N)^{N-m} = exp(i2k\pi(1-m/N))$$

where $1 \le m < N$ is the number of $|0\rangle\langle 1|$ in the tensor product. Taking the summation from k = 1 to N, the coefficient of this term ends up with zero.

What matters

- Qubit mapping and routing
 - The interaction graph of a circuit should be perfectly embedded into the coupling map of a device.
 - Qubits with lower read-out errors and entangling gates with lower errors should be picked up.
 - Rely on the transpiler with a "transpiler-friendly" circuit or do it yourself!
- Circuit depth
 - A "balanced" tree of entangling gates should be pursued.
- Error mitigation / Error suppression

Break

We then have a Jupyter notebook session.

IBM Quantum

Thank you