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3D COMPLEX NUMBER
PREFACE

The fundamental theorem of algebra describes the advantages of the utilzation of the complex numbers and their conjugates.
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Let another kind of complex number be as: , where X | Z = horizontal axes ; Y — vertical axis, and where
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¢ is not a Quaternion or other Cayley-Dickson construction.
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we note that

But, Let assume , a complex number that replaces X in a 2dimensional complex plane.

Then we assume that the modulus ¥ can rotate in the closed set [0, 2] . Touse S instead of X allows us to use three-dimensional space while

maintaining the features of complex numbers. So, S that intrinsically includes 1 except the cases where the interaxles angle is ™ T 1 =
integer, is a dependent variable and it is mobile in all ¥ + Z plane , by assigning appropriate values at X and Z. The position of § can range in

[0, 2m] by the infinite factors of T
Then
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Moreover if
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also by ¥ we have



u, +iv, +iw, —iu, + v, +w,

(%) = sgo0————  £'(Gy) =
0 iz_)n 3 Zo ﬂ:z—’l]
also by Uz ,Vz, Wz we have 11\.(2 - ﬂ'zz
As f(Go) =a+ib+ic hence we have
u, Vy wy v, w,
a = limﬂ.ix—ﬂ]E » lim.ﬁ.iy—H]E » lim.ﬁ.iy—H]E » limfi'.;z—ﬂ]E » lim.ﬁ.(z—ﬂ]E
4 ¥ v
b = ; Y . _
- limAZ, —0 Az, limAZ,—0 Az,
= Wx _
c = HmAZ—037 - limAZ, —0 ra

Holomorphy Conditions
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and deriving partially by X on @ , ¥ on D | Z on € | we obtain

But if

in d the Holomorphy conditions are the same in 2d-complex number:
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the Cauchy-Riemann equations in 3= are R

deriving partially the first equation by X and the second equation by Z then deriving partially the first equation by Z and the second equation
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instead, deriving partially the first equation by ¥ and the second equation by 8 | we obtain

So we obtain the Laplacian on 3D on v-vector but not on u-vector neither w-vector . The laplacian equation is only on direction of axis ¥ that



3
links the north pole and south pole of the sphere 0 1

obtained by the Normed space consisting of vectors 3n and v(x,y,z) is the

harmonic function of the laplacian equation on the v-vector

Trigonometric coordinates and Eulerian equations:
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TPT 4y Euler's identity

then also by De Moivre equations , with Il = integer
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P1/4 approximately is 3.14159265358979/4 = 0.785398163397448
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How wrong are we in calculating the position of the point 3 and its vector? we need to neutralize, as far as possible, the irrationality of TC to
reduce the margin of error.
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eg: the angle have value T | then assuming TU is not a transcendental number and not even an irrational, then, the calculation of the value of
Eﬂe , nkeq E*n:

the angle would be more exact. in this case, the argument to be used for the calculation of the angles should be k instead of K

So in other case which T could be non-irrational, eg jm+ ke , ﬂv{_ , the identification of the point position 3 will be more precise.



